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Abstract

We study the problem of learning using com-
binations of machines. In particular we
present new theoretical bounds on the gener-
alization performance of voting ensembles of
kernel machines. Special cases considered are
bagging and support vector machines. We
present experimental results supporting the
theoretical bounds, and describe character-
istics of kernel machines ensembles suggested
from the experimental findings. We also show
how such ensembles can be used for fast train-
ing with very large datasets.

1. Introduction

Two major recent advances in learning theory are
support vector machines (SVM) (Vapnik, 1998) and
ensemble methods such as boosting and bagging
(Breiman, 1996; Schapire et al., 1998). Distribution
independent bounds on the generalization performance
of these two techniques have been suggested recently
(Shawe-Taylor & Cristianini, 1998; Bartlett, 1998;
Schapire et al., 1998), and similarities between these
bounds in terms of a geometric quantity known as the
margin have been proposed. More recently bounds on
the generalization performance of SVM based on cross-
validation have been derived (Vapnik, 1998; Chapelle
& Vapnik, 1999). These bounds depend also on geo-
metric quantities other than the margin (such as the
radius of the smallest sphere containing the support
vectors).

In this paper we study the generalization performance
of ensembles of general kernel machines using cross-
validation arguments. The kernel machines considered
are learning machines of the form

f(x) =
�∑

i=1

αiK(xi,x), (1)

where (xi, yi) i = 1 . . . � are the training points and
K is a kernel function, for example a Gaussian - see
(Vapnik, 1998; Wahba, 1990) for a number of kernels.
The coefficients αi are learned by solving the following
optimization problem:

maxα

∑�

i=1
S(αi) − 1

2

∑�

i,j=1
αiαjyiyiKij

subject to : 0 ≤ αi ≤ C

(2)

where S(·) is a cost function, C a constant, and we
have defined Kij = Kij . SVM are a particular case
of these machines for S(α) = α. For SVM, points
for which αi �= 0 are called support vectors. Notice
that the bias term (threshold b in the general case of
machines f(x) =

∑�
i=1 αiK(xi,x)+ b) is incorporated

in the kernel K.

We study the cross-validation error of general voting
ensembles of kernel machines (2). Particular cases are
that of bagging kernel machines each trained on dif-
ferent subsamples of the initial training set, or that
of voting kernel machines each using a different kernel
(also different subsets of features/components of the
initial input features). We first present bounds on the
generalization error of such ensembles, and then dis-
cuss experiments where the derived bounds are used
for model selection. We also show experimental results
showing that a validation set can be used for model se-
lection for kernel machines and their ensembles, with-
out having to decrease the training set size in order
to create a validation set. Finally we show how such
ensembles can be used for fast training with very large
data sets.

2. Generalization Performance of
Kernel Machines Ensembles

The theoretical results of the paper are based on the
cross-validation (or leave-one-out) error. The cross-
validation procedure consists of removing from the



training set one point at a time, training a machine
on the remaining points and then testing on the re-
moved one. The number of errors counted through-
out this process, L ((xi, y1), . . . (x�, y�)), is called the
cross-validation error. It is known that this quantity
provides an estimate of the generalization performance
of a machine (Wahba, 1990; Vapnik, 1998). In partic-
ular the expectation of the generalization error of a
machine trained using � points is bounded by the ex-
pectation of the cross validation error of a machine
trained on �+1 points (Luntz and Brailovsky theorem
(Vapnik, 1998)).

We begin with some known results on the cross-
validation error of kernel machines. The following the-
orem is from (Jaakkola & Haussler, 1998) :

Theorem 2.1 The cross-validation error of a kernel
machine (2) is upper bounded as:

L ((xi, y1), . . . (x�, y�)) ≤
�∑

i=1

θ(αiKii − yif(xi)) (3)

where θ is the Heavyside function, and f is the optimal
function found by solving maximization problem (2).

In the particular case of SVM where the data are sep-
arable (3) can be bounded by geometric quantities,
namely (Vapnik, 1998):

�∑
i=1

θ(αiKii − yif(xi)) ≤
D2

sv

ρ2
(4)

where Dsv is the radius of the smallest sphere in the
feature space induced by kernel K (Wahba, 1990; Vap-
nik, 1998) centered at the origin containing the sup-
port vectors, and ρ is the margin (ρ2 = 1

‖f‖2
K

) of the
SVM.

Using this result, the following theorem is a direct ap-
plication of the Luntz and Brailovsky theorem (Vap-
nik, 1998):

Theorem 2.2 The average generalization error of an
SVM (with zero threshold b, and in the separable case)
trained on � points is upper bounded by

1
� + 1

E

(
D2

sv(�)

ρ2(�)

)
,

where the expectation E is taken with respect to the
probability of a training set of size �.

Notice that this result shows that the performance of
SVM does not depend only on the margin, but also
on other geometric quantities, namely the radius Dsv.

In the non-separable case, it can be shown (the proof
is similar to that of corollary 2.2 below) that equation
(4) can be written as:

�∑
i=1

θ(αiKii − yif(xi)) ≤ EE1 +
D2

sv

ρ2
(5)

where EE1 is the hard margin empirical error of the
SVM (the number of training points with yf(x) < 1).

We now extend these results to the case of ensembles of
kernel machines. We consider the general case where
each of the machines in the ensemble uses a different
kernel. Let T be the number of machines, and let K(t)

be the kernel used by machine t. Notice that, as a spe-
cial case, appropriate choices of K(t) lead to machines
that may have different subsets of features from the
original ones. Let f (t)(x) be the optimal solution of
machine t (real-valued), and α

(t)
i the optimal weight

that machine t assigns to point (xi, yi) (after solving
problem (2)). We consider ensembles that are linear
combinations of the individual machines. In particu-
lar, the separating surface of the ensemble is:

F (x) =
T∑

t=1

ctf
(t)(x) (6)

and the classification is done by taking the sign of
this function. The coefficients ct are not learned (i.e.
ct = 1

T ), and
∑T

t=1 ct = 1 (for scaling reasons), ct > 0.
All parameters (C’s and kernels) are fixed before train-
ing. In the particular case of bagging, the subsampling
of the training data should be deterministic. With this
we mean that when the bounds are used for model (pa-
rameter) selection, for each model the same subsample
sets of the data need to be used. These subsamples,
however, are still random ones. We believe that the
results presented below also hold (with minor modi-
fications) in the general case that the subsampling is
always random. We now consider the cross-validation
error of such ensembles.

Theorem 2.3
The cross-validation error L ((xi, y1), . . . (x�, y�)) of a
kernel machines ensemble is upper bounded by:

�∑
i=1

θ(
T∑

t=1

ctα
(t)
i K

(t)
ii − yiF (xi)) (7)

The proof of this theorem is based on the following
lemma shown in Vapnik (1998) and in Jaakkola and
Haussler (1998):

Lemma 2.1 Let αi be the coefficient of the solution
f(x) of machine (2) corresponding to point (xi, yi),



αi �= 0. Let fi(x) be the solution of machine (2) found
when point (xi, yi) is removed from the training set.
Then: yifi(xi) ≥ yif(xi) − αiKii.

Using lemma 2.1 we can now prove theorem 2.3.

Proof of theorem 2.3: Let Fi(x) =
∑T

t=1 ctf
(t)
i (x)

be the final machine trained with all initial training
data except (xi, yi). Lemma 2.1 gives that

yiFi(xi) = yi

T∑
t=1

ctf
(t)
i (xi) ≥

≥ yi

T∑
t=1

ctf
(t)(x) −

T∑
t=1

ctα
(t)
i K

(t)
ii =

= yiF (xi) −
T∑

t=1

ctα
(t)
i K

(t)
ii ⇒

⇒ θ(−yiFi(xi)) ≤ θ(

T∑
t=1

ctα
(t)
i K

(t)
ii − yiF (xi))

therefore the leave one out error
∑�

i=1 θ(−yiFi(xi))
is not more than

∑�
i=1 θ(

∑T
t=1 ctα

(t)
i K

(t)
ii − yiF (xi))

which proves the theorem. �

Notice that the bound has the same form as bound (3):
for each point (xi, yi) we only need to take into ac-
count its corresponding parameter α

(t)
i and “remove”

the effects of α
(t)
i from the value of F (xi).

The cross-validation error can also be bounded using
geometric quantities. To this purpose we introduce
one more parameter that we call the ensemble margin
(in contrast to the margin of a single SVM). For each
point (xi, yi) we define its ensemble margin to be sim-
ply yiF (xi). This is exactly the definition of margin in
(Schapire et al., 1998). For any given δ > 0 we define
EEδ to be the number of training points with ensemble
margin < δ (empirical error with margin δ), and by Nδ

the set of the remaining training points - the ones with
ensemble margin ≥ δ. Finally, we note by Dt(δ) to be
the radius of the smallest sphere in the feature space
induced by kernel K(t) centered at the origin contain-
ing the points of machine t with α

(t)
i �= 0 and ensemble

margin larger than δ (in the case of SVM, these are
the support vectors of machine t with ensemble mar-
gin larger than δ). A simple consequence of theorem
2.3 and of the inequality K

(t)
ii ≤ D2

t(δ) for points xi

with α
(t)
i �= 0 and ensemble margin yiF (xi) ≥ δ is the

following:

Corollary 2.1 For any δ > 0 the cross-validation er-
ror L ((xi, y1), . . . (x�, y�)) of a kernel machines en-

semble is upper bounded by:

EEδ +
1
δ

(
T∑

t=1

ctD
2
t(δ)(

∑
i∈Nδ

α
(t)
i )

)
(8)

Proof: For each training point (xi, yi) with ensemble
margin yiF (xi) < δ we upper bound
θ(

∑T
t=1 ctα

(t)
i K

(t)
ii − yiF (xi)) with 1 (this is a trivial

bound). For the remaining points (the points in Nδ)
we show that:

θ(

T∑
t=1

ctα
(t)
i K

(t)
ii − yiF (xi)) ≤

1

δ

T∑
t=1

ctα
(t)
i K

(t)
ii .

If
∑T

t=1 ctα
(t)
i K

(t)
ii − yiF (xi) < 0, then:

θ(

T∑
t=1

ctα
(t)
i K

(t)
ii − yiF (xi)) = 0 ≤ 1

δ

T∑
t=1

ctα
(t)
i K

(t)
ii .

On the other hand, if
∑T

t=1
ctα

(t)
i K

(t)
ii − yiF (xi) ≥ 0,

then θ(
∑T

t=1
ctα

(t)
i K

(t)
ii − yiF (xi)) = 1, while

T∑
t=1

ctα
(t)
i K

(t)
ii ≥ yiF (xi) ≥ δ ⇒ 1

δ

T∑
t=1

ctα
(t)
i K

(t)
ii ≥ 1.

So in both cases inequality (9) holds. Therefore:

�∑
i=1

θ(

T∑
t=1

ctα
(t)
i K

(t)
ii − yiF (xi)) ≤

≤ EEδ +
1

δ

(∑
i∈Nδ

T∑
t=1

ctK
(t)
ii α

(t)
i

)
≤

≤ EEδ +
1

δ

(
T∑

t=1

ctD
2
t(δ)(

∑
i∈Nδ

α
(t)
i )

)

which proves the corollary. �

Notice that equation (8) holds for any δ > 0, so the
best bound is obtained for the minimum of the right
hand side with respect to δ > 0. Using the Luntz
and Brailovsky theorem, theorems 2.3 and 2.1 provide
bounds on the generalization performance of general
kernel machines ensembles like that of theorem 2.2.

We now consider the particular case of SVM ensem-
bles. In this case, for example choosing δ = 1 (8)
becomes:

Corollary 2.2 The leave-one-out error of an ensem-
ble of SVMs is upper bounded by:

L ((xi, y1), . . . (x�, y�)) ≤ EE1 +
T∑

t=1

ct
D2

t

ρ2
t

(9)



where EE1 is the margin empirical error with ensem-
ble margin 1, Dt is the radius of the smallest sphere
centered at the origin, in the feature space induced by
kernel K(t), containing the support vectors of machine
t, and ρt is the margin of SVM t.

This is because clearly Dt ≥ Dt(δ) for any δ, and∑
i∈Nδ

α
(t)
i ≤

∑�
i=1 α

(t)
i = 1

ρ2
t

(see (Vapnik, 1998) for
a proof of this equality). A number of remarks can be
made from equation (9).

First notice that the generalization performance of the
SVM ensemble now depends on the “average” (convex
combination of) D2

ρ2 of the individual machines. In

some cases this may be smaller than the D2

ρ2 of a single
SVM. For example, suppose we train many SVMs on
different subsamples of the training points and we want
to compare such an ensemble with a single SVM using
all the points. If all SVMs (the single one, as well as
the individual ones of the ensemble) use most of their
training points as support vectors, then clearly the D2

of each SVM in the ensemble is smaller than that of
the single SVM. Moreover the margin of each SVM in
the ensemble is expected to be larger than that of the
single SVM using all the points. So the “average” D2

ρ2

in this case is expected to be smaller than that of the
single SVM. Another case where an ensemble of SVMs
may be better than a single SVM is the one where there
are outliers among the training data: if the individual
SVMs are trained on subsamples of the training data,
some of the machines may have smaller D2

ρ2 because
they do not use some outliers. In general it is not
clear when ensembles of kernel machines are better
than single machines. The bounds in this section may
provide some insight to this question.

Notice also how the ensemble margin δ plays a role for
the generalization performance of kernel machine en-
sembles. This margin is also shown to be important for
boosting (Schapire et al., 1998). Finally, notice that
all the results discussed hold for the case that there is
no bias (threshold b), or the case where the bias is in-
cluded in the kernel (as discussed in the introduction).
In the experiments discussed below we use the results
also for cases where the bias is not regularized, which
is common in practice. It may be possible to use recent
theoretical results (Chapelle & Vapnik, 1999) on the
leave-one-out bounds of SVM when the bias b is taken
into account in order to study the generalization per-
formance of kernel machines ensembles with the bias
b.

3. Experiments

To test how tight the bounds we presented are, we
conducted a number of experiments using data sets
from UCI,1 as well as the US Postal Service (USPS)
data set (LeCun et al., 1990) . We show results for
some of the sets in Figures 1-2. For each data set we
split the overall set in training and testing (the sizes
are shown in the figures) in 50 different (random) ways,
and for each split:

1. We trained one SVM with b = 0 using all training
data, computed the leave-one-bound given by theorem
2.1, and then compute the test performance using the
test set.

2. We repeated (1) this time with with b �= 0.

3. We trained 30 SVMs with b = 0 each using a ran-
dom subsample of size 40% of the training data (bag-
ging), computed the leave-one-bound given by theorem
2.3 using ct = 1

30 , and then compute the test perfor-
mance using the test set.

4. We repeated (3) this time with with b �= 0.

We then averaged over the 50 training-testing splits
the test performances and the leave-one-out bounds
found, and computed the standard deviations. All
machines were trained using a Gaussian kernel, and
we repeated the procedure for a number of different
σ’s of the Gaussian, and for a fixed C (show in the fig-
ures). We show the averages and standard deviations
of the results in the figures. In all figures we use the
following notation: top left figure: bagging with b = 0;
top right figure: single SVM with b = 0; bottom left
figure: bagging with b �= 0; and bottom right figure:
single SVM with b �= 0. In all plots the solid line is the
mean test performance and the dashed line is the er-
ror bound computed using the leave-one-out theorems
(theorems 2.1 and 2.3). The dotted line is the vali-
dation set error discussed below. For simplicity, only
one error bar (standard deviation over the 50 training-
testing splits) is shown (the others were similar). The
cost parameter C used is given in each of the figures.
The horizontal axis is the natural logarithm of the σ
of the Gaussian kernel used, while the vertical axis is
the error.

An interesting observation is that the bounds are al-
ways tighter for the case of bagging than they are for
the case of a single SVM. This is an interesting ex-
perimental finding for which we do not have a the-
oretical explanation. It may be because the gener-
alization performance of a machine is related to the
expected leave-one-out error of the machine (Vapnik,

1http://www.ics.uci.edu/ mlearn/MLRepository.html



Figure 1. Breast cancer data: see text for description.

1998), and by combining many machines each using a
different (random) subset of the training data we bet-
ter approximate the “expected” leave-one-out than we
do when we only compute the leave-one-out of a single
machine. This finding can practically justify the use of
ensembles of machines for model selection: parameter
selection using the leave-one-out bounds presented in
this paper is easier for ensembles of machines than it
is for single machines.

Another interesting observation is that the bounds
seem to work similarly in the case that the bias b is
not 0. In this case, as before, the bounds are tighter
for ensembles of machines than they are for single ma-
chines.

In all our experiments we always found that the
bounds presented here (equations (3) and (7)) get
looser in the case that the parameter C used dur-
ing the training, is large. A representative example
is shown in figure 3. This result can be understood
looking at the leave-one-out bound for a single SVM
(equation (3)). Let (xi, yi) be a support vector for
which yif(xi) < 1. It is known (Vapnik, 1998) that
for these support vectors the coefficient αi is C. If
C is such that CKii > 1 (for the Gaussian kernel
this reduces to C > 1, as K(x,x) = 1), then clearly
θ(CKii − yif(xi)) = 1. In this case the bound in
equation (3) effectively counts all support vectors with
margin less then one (plus some of the ones on the
margin - yf(x) = 1). This means that for “large” C
(in the case of Gaussian kernels this can be for exam-
ple for any C > 1), the bounds of this paper effectively
are similar (not larger than) to another known leave-
one-out bound for SVMs, namely one that uses the
number of all support vectors to bound generalization

Figure 2. USPS data: see text for description.

performance (Vapnik, 1998). So effectively our experi-
mental results show that the number of support vectors
does not provide a good estimate of the generalization
performance of the SVMs and their ensembles.

4. Validation Set for Model Selection

Instead of using bounds on the generalization perfor-
mance of learning machines like the ones discussed
above, an alternative approach for model selection is
to use a validation set to choose the parameters of the
machines. We consider first the simple case where we
have N machines and we choose the “best” one based
on the error they make on a fixed validation set of size
V . This can be thought of as a special case where we
consider as our hypothesis space to be the set of the N
machines, and then we “train” by simply picking the
machine with the smallest “empirical” error (in this
case this is the validation error). It is known that if
V Ei is the validation error of machine i and TEi is
its true test error, then for all N machines simultane-
ously the following bound holds with probability 1− η
(Devroye et al., 1996; Vapnik, 1998) :

TEi ≤ V Ei +

√
log(N) − log(η

4 )
V

(10)

So how “accurately” we pick the best machine using
the validation set depends, as expected, on the number
of machines N and on the size V of the validation set.
The bound suggests that a validation set can be used
to accurately estimate the generalization performance
of a relatively small number of machines (i.e. small
number of parameter values examined), as done often
in practice.



Figure 3. USPS data: using a large C (C=50). In this case
the bounds do not work; see text for an explanation.

We used this observation for parameter selection for
SVM and for their ensembles. Experimentally we fol-
lowed a slightly different procedure from what is sug-
gested by bound (10): for each machine (that is, for
each σ of the Gaussian kernel in our case, both for
a single SVM and for an ensemble of machines) we
split the training set (for each training-testing split of
the overall data set as described above) into a smaller
training set and a validation set (70-30% respectively).
We trained each machine using the new, smaller train-
ing set, and measured the performance of the machine
on the validation set. Unlike what bound (10) sug-
gests, instead of comparing the validation performance
found with the generalization performance of the ma-
chines trained on the smaller training set (which is the
case for which bound (10) holds), we compared the
validation performance with the test performance of
the machine trained using all the initial (larger) train-
ing set. This way we did not have to use less points
for training the machines, which is a typical drawback
of using a validation set, and we could compare the
validation performance with the leave-one-out bounds
and the test performance of the exact same machines
we used in the previous section.

We show the results of these experiments in figures
1-2: see the dotted lines in the plots. We observe
that although the validation error is that of a machine
trained on a smaller training set, it still provides a
very good estimate of the test performance of the ma-
chines trained on the whole training set. In all cases,
including the case of C > 1 for which the leave-one-out
bounds discussed above did not work well, the valida-
tion set error provided a very good estimate of the test
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Figure 4. When the coefficients of the second layer are
learned using a linear SVM the system is less sensitive to
changes of the σ of the Gaussian kernel used by the indi-
vidual machines of the ensemble. Solid line is one SVM,
dotted is ensemble of 30 SVMs with fixed ct = 1

30 , and
dashed line is ensemble of 30 SVMs with the coefficients ct

learned. The horizontal axis shows the natural logarithm
of the σ of the Gaussian kernel. The data use is the heart
data set. The threshold b is non-zero for this experiment.

performance of the machines.

5. Other Ensembles

The ensemble kernel machines (6) considered so far are
voting combinations where the coefficients ct in (6) of
the linear combination of the machines are fixed. We
now consider the case where these coefficients are also
learned from the training subsets. In particular we
consider the following architecture:

a. A number T of kernel machines is trained as before
(for example using different training data, or different
parameters).

b. The T outputs (real valued in our experiments, but
could also be thresholded - binary) of the machines at
each of the training points are computed.

c. A linear machine (i.e. linear SVM) is trained us-
ing as inputs the outputs of the T machines on the
training data, and as labels the original training la-
bels. The solution is used as the coefficients ct of the
linear combination of the T machines.

Notice that for this type of machines the leave-one-out
bound of theorem 2.3 does not hold since the theo-
rem assumes fixed coefficients ct. A validation set can
still be used for model selection for these machines.
On the other hand, an important characteristic of this
type of ensembles is that independent of what ker-
nels/parameters each of the individual machines of the
ensemble use, the “second layer” machine (which finds
coefficients ct) uses always a linear kernel. This may



imply that the overall architecture may not be very
sensitive to the kernel/parameters of the machines of
the ensemble. We tested this hypothesis experimen-
tally by comparing how the test performance of this
type of machines changes with the σ of the Gaussian
kernel used from the individual machines of the en-
semble, and compared the behavior with that of single
machines and ensembles of machines with fixed ct. In
figure 5 we show two example. In our experiments,
for all data sets except from one, learning the coeffi-
cients ct of the combination of the machines using a
linear machine (we used a linear SVM) made the over-
all machine less sensitive to changes of the parameters
of the individual machines (σ of the Gaussian kernel).
This can be practically a useful characteristic of the
architecture outlined in this section: for example the
choice of the kernel parameters of the machines of the
ensembles need not be tuned accurately.

6. Ensembles versus Single Machines

So far we concentrated on the theoretical and experi-
mental characteristics of ensembles of kernel machines.
We now discuss how ensembles compare with single
machines.

Table 1 shows the test performance of one SVM com-
pared with that of an ensemble of 30 SVMs combined
with ct = 1

30 and an ensemble of 30 SVMs combined
using a linear SVM for some UCI data sets (character-
istic results). For the tables of this section we use, for
convenience, the following notation:

VCC stands for “Voting Combinations of Classifiers”,
meaning that the coefficients ct of the combination of
the machines are fixed.

ACC stands for “Adaptive Combinations of Classi-
fiers”, meaning that the coefficients ct of the combi-
nation of the machines are learned-adapted.

We only consider SVM and ensembles of SVMs with
the threshold b. The table shows mean test errors
and standard deviations for the best (decided using
the validation set performance in this case) parame-
ters of the machines (σ’s of Gaussians and parame-
ter C - hence different from figures 1-2 which where
for a given C). As the results show, the best SVM
and the best ensembles we found have about the same
test performance. Therefore, with appropriate tuning
of the parameters of the machines, combining SVM’s
does not lead to performance improvement compared
to a single SVM. Although the “best” SVM and the
“best” ensemble (that is, after accurate parameter tun-
ing) perform similarly, an important difference of the
ensembles compared to a single machine is that the

Table 1. Average errors and standard deviations (percent-
ages) of the “best” machines (best σ of the Gaussian kernel
and best C) - chosen according to the validation set per-
formances. The performances of the machines are about
the same. VCC and ACC use 30 SVM classifiers.

Data Set SVM VCC ACC
Breast 25.5 ± 4.3 25.6 ± 4.5 25 ± 4
thyroid 5.1 ± 2.5 5.1 ± 2.1 4.6 ± 2.7
diabetes 23 ± 1.6 23.1 ± 1.4 23 ± 1.8
heart 15.4 ± 3 15.9 ± 3 15.9 ± 3.2

Table 2. Comparison between error rates of a single SVM
v.s. error rates of VCC and ACC of 100 SVMs for different
percentages of subsampled data. The last data set is from
(Osuna et al., 1997) .

Data Set VCC 5% VCC 1% SVM
Diabetes 26.2 - 23 ± 1.6
Thyroid 22.2 - 5.1 ± 2.5
Faces .2 .5 .1

training of the ensemble consists of a large number of
(parallelizable) small-training-set kernel machines - in
the case of bagging. This implies that one can gain per-
formance similar to that of a single machine by train-
ing many faster machines using smaller training sets.
This can be an important practical advantage of en-
sembles of machines especially in the case of large data
sets. Table 2 compares the test performance of a single
SVM with that of an ensemble of SVM each trained
with as low as 1% of the initial training set (for one
data set). For fixed ct the performance decreases only
slightly in all cases (thyroid, that we show, was the
only data set we found in our experiments for which
the change was significant for the case of VCC), while
in the case of the architecture of section 5 even with
1% training data the performance does not decrease:
this is because the linear machine used to learn coef-
ficients ct uses all the training data. Even in this last
case the overall machine can still be faster than a sin-
gle machine, since the second layer learning machine is
a linear one, and fast training methods for the particu-
lar case of linear machines exist (Platt, 1998). Finally,
it may be the case that ensembles of machines perform
better for some problems in the presence of outliers (as
discussed in section 3.1), or, if the ensemble consists
of machines that use different kernels and/or different
input features, in the presence of irrelevant features.
The leave-one-out bounds presented in this paper may
be used for finding these cases and for better under-
standing how bagging and general ensemble methods
work (Breiman, 1996; Schapire et al., 1998) .



7. Conclusions

We presented theoretical bounds on the generalization
error of ensembles of kernel machines. Our results ap-
ply to the quite general case where each of the ma-
chines in the ensemble is trained on different subsets
of the training data and/or uses different kernels or
input features. Experimental results supporting our
theoretical findings have been presented.

A number of observations have been made from the
experiments. We summarize some of them below:

1. The leave-one-out bounds for ensembles of machines
have a form similar to that of single machines. In the
particular case of SVMs, the bounds are based on an
“average” geometric quantity of the individual SVMs
of the ensemble (average margin and average radius of
the sphere containing the support vectors).

2. The leave-one-out bounds presented are experimen-
tally found to be tighter than the equivalent ones for
single machines.

3. For SVM, the leave-one-out bounds based on the
number of support vectors are experimentally found
not to be tight.

4. Experimentally we found that a validation set can
be used for accurate model selection without having
to decrease the size of the training set used in order to
create a validation set.

5. With accurate parameter tuning (model selection)
single SVMs and ensembles of SVMs perform similarly.

6. Ensembles of machines for which the coefficients of
combining the machines are also learned from the data
are less sensitive to changes of parameters (i.e. kernel)
than single machines are.

7. Fast (parallel) training without significant loss of
performance relatively to single whole-large-training-
set machines can be achieved using ensembles of ma-
chines.

A number of questions and research directions are
open. An important theoretical question is how the
bounds and experiments presented in this paper are
related with Breiman’s (1996) bias-variance analysis of
bagging. For example, the fact that single SVM per-
form about the same as ensembles of SVMs may be be-
cause SVMs are stable machines, i.e., they have small
variance (Breiman, 1996). Experiments on the bias-
variance decomposition of SVM and kernel machines
may lead to further understanding of these machines.
The theoretical results we presented here approach the
problem of learning with ensembles of machines from a
different perspective - from that of studying the leave-
one-out geometric bounds of these machines. On the

practical side, further experiments using very large
data sets are needed to support our experimental find-
ing that the ensembles of machines can be used for
fast training without significant loss in performance.
Finally, other theoretical questions are how to extend
the bounds of section 2 to the type of machines dis-
cussed in section 5, and how to use more recent leave-
one-out bounds for SVM (Chapelle & Vapnik, 1999)
to better characterize the performance of ensembles of
machines.
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