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About this class

Theme We discuss bagging and boosting and provide some

attempts to justify them�

Web The slides and all what concerns this class can be

found on the web�

�
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� Bagging
� Bias�Variance Decomposition

� Combinations of Kernel Machines �i�e� SVM�

� Boosting and Adaboost
� Bounds for Boosting

� Additive Logistic Regression
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Some motivations for combining Learning

Machines

• Suppose you have many �easy rules�� combining them

may be a good idea�

• Parameter Estimation� combine many machines each

with di�erent parameters�
• Bootstrap� maybe helps with �variance��

�



Bagging �Bootstrap AGGregatING�

Given a training set D 	 {�x�, y��, . . . �x�, y��}


• sample N sets of � elements from D �with replacement�

D�, D�, . . . DN → N quasi replica training sets�

• train a machine on each Di
 i 	 �, ..., N and obtain a

sequence of N outputs f��x�, . . . fN�x��

�



Bagging �cont��

The 
nal aggregate classi
er can be

• for regression

�f�x� 	 E{fi�x�},

the average of fi for i 	 �, ..., N �

• for classi
cation

�f�x� 	 θ�E{fi�x�}�

the majority vote from fi�x��

�



Theoretical analysis

Breiman ������ studies the average generalization perfor�

mance of a learning algorithm with respect to the training

set� It is possible to relate this quantity to the distance or

bias between the Bayes optimal solution and the average

solution of the learning algorithm and the variance of the

solution�

�



Bias � Variance for Regression

Let

I�f� 	

∫

�f�x�− y��p�x, y�dxdy

be the expected risk and f� the regression function� With

�f�x� 	 E{fi�x�}
 if we de
ne the bias as∫
�f��x�− �f�x���p�x�dx

and the variance as

E

{∫
�fi�x�− �f�x���p�x�dx

}
,

we have the decomposition

E{I�fi�} 	 I�f�� � bias� variance.

�



Bias�Variance for Classi�cation

No unique decomposition for classi
cation exists� In the

binary case
 with �f�x� 	 θ�E{fi�x�}�
 the decomposition

suggested by Kong and Dietterich ������ is

I� �f �− I�f��

for the bias
 and

E{I�fi�} − I� �f �

for the variance
 which �again� gives

E{I�fi�} 	 I�f�� � bias� variance.

	



Bagging reduces variance

If each single classi
er is unstable � that is
 it has high

variance
 the aggregated classi
er �f has a smaller vari�

ance than a single original classi
er�

The aggregated classi
er �f can be thought of as an ap�

proximation to the true average f obtained by replacing

the probability distribution p with the bootstrap approxi�

mation to p obtained concentrating mass �/� at each point

�xi, yi��

��



Ensembles of Kernel Machines

What happens when combining kernel machines �i�e� SVM��

• Di�erent subsamples of training data �bagging�

• Di�erent kernels or di�erent features

• Di�erent parameters �i�e� regularization parameter�
��



Combination of SVM Machines

Let f��x�, . . . , fN�x� be SVM machines we want to combine

and let

f�x� 	

N∑
n��

cnfn�x�

for some 
xed cn > � with

∑
cn 	 ��

We want to study the generalization performance of f�x�

��



Leave�one�out error

The leave�one�out error is computed in three steps

�� Leave a training point out

�� Train the remaining points and test the point left out

�� Repeat for each training point and count �errors�

Theorem �Luntz and Brailovski
 �����

E{I�f��} 	 E{CV error of f�
�}

��



Leave�one�out of a kernel machine

The leave�one�out error of a kernel machine �without b� is

upper bounded by
�∑

i��

θ�αiK�xi,xi�− yif�xi��

�Jaakkola and Haussler
 �����

��



Proof �SVM case�

Given � examples we have

L�αα� 	

∑
j

αj −

�
�

∑
j,k

αjαkyjykKjk.

If αα∗ denotes the maximizer we clearly have

L�αα∗� ≥ L�αα� ∀αα.

If we leave the i�th point out
 denoting with L′ the new

objective function and with αα′ the �−��dimensional vector

of Lagrangian multipliers
 we can write

L′�αα′� 	

∑
j ��i

αj −
�

�

∑
j,k ��i

αjαkyjykKjk.

If �αα′ denotes the maximizer we have
L′��αα′� ≥ L′�αα′� ∀αα′.

��



Proof �cont��

Consider the objective function L with αi 	 α∗
i 


L�αα′�α∗
i� 	 L′�αα′�− α∗

i yi

∑
j ��i

αjyjKij � α∗
i .

Since αα∗ is a maximizer for L we have that

L�αα′∗�α∗
i� ≥ L��αα′�α∗

i�

which can be rewritten as

L′�αα′∗�− α∗
i yi

∑
j ��i

α∗
jyjKij ≥ L′��αα′�− α∗

i yi

∑
j ��i

�αjyjKij.

��



Proof �cont��

Since �αα′ is a maximizer for L′ we have

L′��αα′� ≥ L′�αα′∗�

and hence we obtain

yif
′�xi� 	 yi

∑
j ��i

�αjyjKij ≥ yi

∑
j ��i

α∗
jyjKij.

On the other hand we have
yif�xi� 	 yi

∑
j ��i

α∗
jyjKij � α∗

iKii,

and therefore we can conclude that
yif

′�xi� ≥ yif�xi�− α∗
iKii.

��



Leave�one�out bound for an SVM

For SVM classi
cation we can also write

�∑
i��

θ�αiK�xi,xi�− yif�xi�� ≤ r�

ρ�

where r is the radius of the smallest sphere containing the

Support Vectors and ρ the true margin �di�erent from the

boosting margin�

��



Leave�one�out bound for a kernel machine

ensemble

The leave�one�out error of a kernel machine ensemble

f�x� 	 c�f��x� � c�f��x� � ...� cNfN�x�

is upper bounded by

�∑
i��

θ�

N∑
n��

�αiK
�n��xi,xi��− yif�xi��

�	



Leave�one�out bound for an SVM ensemble

�Evgeniou et al�� �����

For an SVM ensemble
 the leave�one�out error can be

bounded using geometry

�∑
i��

θ�

N∑
n��

�αiK
�n��xi,xi��− yif�xi�� ≤

N∑
n��

r��n�

ρ��n�

where r�n� is the radius of the smallest sphere containing

the SVs of machine n and ρ�n� the margin of SVM n� This

suggests that bagging SVMs can be a good idea�

��



Recent developments �Evgeniou et al�

�����

Through a modi
ed version of the notion of stability
 it is

possible to study conditions under which bagging should

or should not improve performances���

��



The original Boosting �Schapire� �		��

�� Train a 
rst classi
er f� on a training set drawn from a

probability p�x, y�� Let ε� be the obtained performance�

�� Train a second classi
er f� on a training set drawn from

a probability p��x, y� such that it has half its measure

on the event that h� makes a mistake and half on the

rest� Let ε� be the obtained performance�

�� Train a third classi
er f� on disagreements of the 
rst

two � that is
 drawn from a probability p��x, y� which

has its support on the event that h� and h� disagree�

Let ε� be the obtained performance�

��



Boosting �cont��

Main result� If εi < p for all i
 the boosted hypothesis

f 	 MajorityV ote �f�, f�, f��

has performance no worse than ε 	 �p� − �p�
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Adaboost �Freund and Schapire� �		
�

The idea is of adaptively resampling the data

• Maintain a probability distribution over training set�

• Generate a sequence of classi
ers in which the �next�

classi
er focuses on sample where the �previous� clas�

si
er failed�

• Weigh machines according to their performance�
��



Adaboost �pseudocode�

Given a learning method that can use weights on the data


initialize the distribution as P��i� 	 �/�.

Then
 for n 	 �, . . . N �

�� Train a machine with weights Pn�i� and get fn�

�� Compute the weighted error εn 	

∑�
i�� Pn�i�θ�−yifn�xi���

�� Compute the importance of fn as αn 	 �/� ln

(

�−εn
εn

)

�

�� Update the distribution Pn
��i� ∝ Pn�i�e−αnyifn�xi��
��



Adaboost �cont��

Adopt as 
nal hypothesis

f�x� 	 sign


 N∑

n��

αnfn�x�




��



Theory of Boosting

We de
ne the margin of �xi, yi� according to the real value

function f to be
margin�xi, yi� 	 yif�xi�.

Note that this notion of margin is di�erent from the SVM

margin� This de
nes a margin for each training point�
��



A �rst theorem on boosting

Theorem �Schapire et al� �����

If running adaboost generates functions with errors�

ε�, . . . εN

Then for ∀γ

�∑
i��

θ�γ − yif�xi�� ≤
N∏

n��

√

�ε�−γ
n ��− εn�

�
γ.

Thus
 the training margin error drops exponentially fast if

εn < �.�

��



A second theorem on boosting

Let H be an hypothesis space with VC�dimension d and C

the convex hull of H

C 	


f � f�x� 	

∑
h∈H

αhh�x� | αh ≥ ��

∑
h

αh 	 �




Theorem �Schapire et al� �����

For ∀f ∈ C and ∀γ > ��

I�f� ≤
�∑

i��

θ�γ − yif�xi�� �O

(
d/�

γ

)
.

This holds for any voting method�

�	



Are these theorems really useful�

• The 
rst theorem simply ensures that the training error

goes to zero���

• The second gives a loose bound which does not ac�

count for the success of boosting as a learning tech�

nique���

��



Additive Logistic Regression

�Friedman� Hastie� Tibshirani �			�

A possibly better insight can be gained by interpreting par�

ticular versions of adaboost as 
tting an additive model

using a certain loss function�

For example
 in the discrete case �fn ∈ {−�,�}�
 it can be

shown that adaboost builds an additive logistic regression

model via Newton�like updates for approximately minimiz�

ing the functional

I�f� 	

∫
e−yf�x�p�x, y�dxdy.

��



Additive Logistic Regression �cont��

The functional I�f� is minimized at

f�x� 	

�
�
log

P�y 	 �|x�

P�y 	 −�|x�

.

Hence


P�y 	 �|x� 	 ef�x�

e−f�x�� ef�x�

P�y 	 −�|x� 	 e−f�x�

e−f�x�� ef�x�

Note that the usual logistic transform would not have the

factor �/��

��



Why this loss� �Shapire and Singer� �		��

The loss

V �f�x�, y� 	 e−yf�x�

• is a di�erentiable upper bound to the �− � loss

• it has similar �avor to the SVM loss

Where is the regularizing term in this case�

��


