9.520: Class 24

Bagging and Boosting

Alessandro Verri
(based on notes from Theodoros Evgeniou)



About this class

Theme We discuss bagging and boosting and provide some
attempts to justify them.

Web The slides and all what concerns this class can be
found on the web.
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Some motivations for combining Learning
Machines

e Suppose you have many “easy rules’: combining them
may be a good idea.

e Parameter Estimation: combine many machines each
with different parameters?

e Bootstrap: maybe helps with “variance” 7



Bagging (Bootstrap AGGregatING)

Given a training set D = {(x1,¥%1),... (Xe,y0)},

e sample N sets of £ elements from D (with replacement)
Di1,D>,... Dy — N quasi replica training sets;

e train a machine on each D;, « = 1,..., N and obtain a
sequence of N outputs fi(x),... fv(x).



Bagging (cont.)

The final aggregate classifier can be

e fOr regression

f(x) = E{fi(x)},

the average of f; for:=1,...,N;

e for classification

f(x) = 0(E{fi(x)})

the majority vote from f;(x).



T heoretical analysis

Breiman (1996) studies the average generalization perfor-
mance of a learning algorithm with respect to the training
set. It is possible to relate this quantity to the distance or
bias between the Bayes optimal solution and the average
solution of the learning algorithm and the variance of the
solution.



Bias - Variance for Regression

Let
171 = [ () = 1)*p(x, y)dxdy

be the expected risk and fo the regression function. With
f(x) = E{f:(x)}, if we define the bias as

[ (o) = FG)p(x)dx

and the variance as

E{ [ (60 = Fe0)*p(x)dx
we have the decomposition

E{I[fi]} = I[fo] 4 bias 4+ variance.



Bias-Variance for Classification

No unique decomposition for classification exists. In the
binary case, with f(x) = 0(E{f;(x)}), the decomposition
suggested by Kong and Dietterich (1995) is

I[f] — I[fo]
for the bias, and
E{I[fi]} — I[f]

for the variance, which (again) gives

E{I[fi]} = I[fo] 4 bias + variance.



Bagging reduces variance

If each single classifier is unstable — that is, it has high
variance, the aggregated classifier f has a smaller vari-
ance than a single original classifier.

The aggregated classifier f can be thought of as an ap-
proximation to the true average f obtained by replacing
the probability distribution p with the bootstrap approxi-
mation to p obtained concentrating mass 1/¢ at each point

(Xi, Yi)-
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Ensembles of Kernel Machines

What happens when combining kernel machines (i.e. SVM)?

e Different subsamples of training data (bagging)

e Different kernels or different features

e Different parameters (i.e. regularization parameter)
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Combination of SVM Machines

Let f1(x),..., fy(x) be SVM machines we want to combine
and let
N
f(x) = Z Cn.fn(X)
n=1

for some fixed ¢, > 0 with > ¢, = 1.

We want to study the generalization performance of f(x)
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Leave-one-out error

The leave-one-out error is computed in three steps

1. Leave a training point out

2. Train the remaining points and test the point left out

3. Repeat for each training point and count “errors”
Theorem (Luntz and Brailovski, 1969)

E{I[f]} = E{CV error of fit1}
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Leave-one-out of a kernel machine

The leave-one-out error of a kernel machine (without b) is
upper bounded by

¢
> (K (xi,%x:) — yif (%))
i=1

(Jaakkola and Haussler, 1998)
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Proof (SVM case)

Given ¢ examples we have

1
L(Oé) = Z()éj — Ez@jakyjyk:Kjk:-
J g,k
If o denotes the maximizer we clearly have
L(a™) > L(a) Va.

If we leave the i-th point out, denoting with L’ the new
objective function and with o’ the ¢ — 1-dimensional vector
of Lagrangian multipliers, we can write

1
jFi j ki
If &’ denotes the maximizer we have
'@y > L) v
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Proof (cont.)

Consider the objective function L with a; = o,

L(a); o) = L'(a) — ajyi ) ajy; Ky + af.
JF1
Since a* is a maximizer for L. we have that
L(a™; o) > L(&; af)

which can be rewritten as

L,(Oz/*) — oz;-‘yi Z a;yjKij Z L,(al) — Oz;-k’yz' Z &jyjKij.
J7F1 J7i
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Proof (cont.)

/

Since &' is a maximizer for L’ we have

L/(&’) 2 L/(a/*)
and hence we obtain

yif (%) = yi Y ayiKy > yi Y oGy K.
JF=i JF=i
On the other hand we have
yif (%) = yi Y, &y Kij + of K,
JF=i
and therefore we can conclude that

vilf (x:) > vif (xi) — af K.
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Leave-one-out bound for an SVM

For SVM classification we can also write

14 2
Z Q(OéiK(Xi,Xi) — yzf(Xz)) < ?
1=1

where r is the radius of the smallest sphere containing the
Support Vectors and p the true margin (different from the
boosting margin!
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Leave-one-out bound for a kernel machine
ensemble

The leave-one-out error of a kernel machine ensemble

f(x) = c1fi(x) + cafa(x) + ... + en fn(x)
IS upper bounded by
¢ N

STOCY (K™ (xi,%:)) — yif (%))

=1 n=1
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Leave-one-out bound for an SVM ensemble
(Evgeniou et al., 2000)

For an SVM ensemble, the leave-one-out error can be
bounded using geometry

14 N N 2
> 00 (@K™ (%)) —wif (x)) < Y2 3

where r(,) is the radius of the smallest sphere containing
the SVs of machine n and p(,) the margin of SVM n. This
suggests that bagging SVMs can be a good idea!
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Recent developments (Evgeniou et al,
2001)

Through a modified version of the notion of stability, it is
possible to study conditions under which bagging should
or should not improve performances...
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The original Boosting (Schapire, 1990)

1. Train a first classifier f; on a training set drawn from a
probability p(x,vy). Let €1 be the obtained performance;

2. Train a second classifier f> on a training set drawn from
a probability p>(x,y) such that it has half its measure
on the event that A1 makes a mistake and half on the
rest. Let e» be the obtained performance;

3. Train a third classifier fz3 on disagreements of the first
two — that is, drawn from a probability ps3(x,y) which
has its support on the event that A1 and hy disagree.
Let e3 be the obtained performance.

22



Boosting (cont.)

Main result: If ¢, < p for all ¢, the boosted hypothesis

f = MajorityVote (f1, f2, f3)

has performance no worse than e = 3p° — 2p°3
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Adaboost (Freund and Schapire, 1996)

The idea is of adaptively resampling the data

e Maintain a probability distribution over training set;

e (Generate a sequence of classifiers in which the “next”
classifier focuses on sample where the ‘“previous’ clas-
sifier failed;

e Weigh machines according to their performance.
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Adaboost (pseudocode)

Given a learning method that can use weights on the data,
initialize the distribution as P1(i) = 1/¢.
Then, forn=1,...N:

1. Train @ machine with weights P,(i) and get f,;
2. Compute the weighted error e, = S-¢_1 Po()0(—y:fa(x:));

3. Compute the importance of f, as ap = 1/21In (%)

n

4. Update the distribution P,11(3) o P,(i)e on¥ifn(x:)
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Adaboost (cont.)

Adopt as final hypothesis
N

f(x) = sign (Z an frn(X)

n=1

|
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Theory of Boosting

We define the margin of (x;,y;) according to the real value
function f to be

margin(x;, v;) = i f(x:).

Note that this notion of margin is different from the SVM
margin. This defines a margin for each training point!

27



A first theorem on boosting

Theorem (Schapire et al, 1997)

If running adaboost generates functions with errors:

€1,... €N
Then for Vv
4 N
S 00y —uif(x)) < [T Va1 — e,

Thus, the training margin error drops exponentially fast if
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A second theorem on boosting

Let H be an hypothesis space with VC-dimension d and C
the convex hull of H

C={f:f(><)= S aph(x) | ap > 0; zah=1}
h

heH

Theorem (Schapire et al, 1997)
For Vf € C and Vv > O:

£ d/¢
If1 <) 0(y—vif(x))+0O|—|.

i=1 2
This holds for any voting method!

29



Are these theorems really useful?

e T he first theorem simply ensures that the training error
goes to zero...

e [ he second gives a loose bound which does not ac-
count for the success of boosting as a learning tech-
nique...
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Additive Logistic Regression
(Friedman, Hastie, Tibshirani 1999)

A possibly better insight can be gained by interpreting par-
ticular versions of adaboost as fitting an additive model
using a certain loss function.

For example, in the discrete case (f, € {—1,1}), it can be
shown that adaboost builds an additive logistic regression
model via Newton-like updates for approximately minimiz-
ing the functional

I[f] = / e WX p(x,y)dxdy.
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Additive Logistic Regression (cont.)

The functional I[f] is minimized at

1 Py = 1|x)
f(x) = - log — LI
2 T Py=-1|x)
Hence,
()
Ply=1x) = Z5 o
e_f(x)
Py =—1lx) =

e—f(x) —+ ef(x)

Note that the usual logistic transform would not have the
factor 1/2.
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Why this loss? (Shapire and Singer, 1998)

The loss

V() ) = e W0

e IS a differentiable upper bound to the O — 1 loss

e it has similar flavor to the SVM loss

Where is the regularizing term in this case?
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