
Support Vector Machines for Phoneme

Classification

Jesper Salomon
T
H
E

U N
I V E R

S

I
T
Y

O
F

E
D I N B U

R
G
H

Master of Science

School of Artificial Intelligence

Division of Informatics

University of Edinburgh

2001

Abstract

In this thesis, Support Vector Machines (SVMs) are applied to the problem of

phoneme classification. Given a sequence of acoustic observations and 40 phoneme

targets, the task is to classify each observation to one of these targets. Since this task

involves multiple classes, one of the main hurdles SVMs must overcome is to extend

the inherently binary SVMs to the multi-class case. To do this, several methods are

proposed, and their generalisation abilities are measured. It is found that even though

some generalisation is lost in the transition, this can still lead to effective classifiers.

In addition, a refinement to the SVMs is made to derive estimated posterior probabil-

ities from classifications. Since almost all speech recognition systems are based on

statistical models, this is necessary if SVMs are to be used in a full speech recognition

system. The best accuracy found was 71.4%, which is competitive with the best results

found in literature.

i

Acknowledgements

I would like to thank Simon King for his guidance and support throughout this project.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Jesper Salomon)

iii

Table of Contents

1 Introduction 1

1.1 Summary of literature . 5

1.1.1 Recurrent Neural Networks 5

1.1.2 Support Vector Machines . 6

1.1.3 Overview of thesis . 7

2 Support Vector Machines 9

2.1 Introduction . 9

2.2 Statistical Learning Theory . 9

2.2.1 Binary Classification Problem 10

2.2.2 Empirical Risk Minimisation 10

2.2.3 Structural Risk Minimisation 11

2.2.4 VC dimension . 11

2.3 Linear Classifiers . 12

2.3.1 The Separable Case . 12

2.3.2 Non-separable case . 18

2.4 Non-linear Classifiers . 20

2.4.1 The “Kernel Trick” . 20

2.4.2 Training . 22

2.4.3 Classification . 22

2.4.4 Kernels . 23

2.5 Choosing the kernel and C . 24

2.6 Bias in SVMs . 25

iv

2.7 Practical Issues . 25

2.8 Multi-class SVMs . 26

2.8.1 One vs. One classifier . 27

2.8.2 One vs. Rest . 28

2.8.3 DAGSVM . 29

2.8.4 Binary Tree . 29

2.9 Conclusion . 32

3 Experiments 33

3.0.1 Toolkits used . 34

3.0.2 The TIMIT speech database 34

3.1 Binary SVM experiments . 35

3.1.1 Experimental setup . 36

3.1.2 Choice of kernel and C . 36

3.1.3 Including different amounts of training data 37

3.2 Selecting multi-class methods . 39

3.3 One vs. One Classifier . 40

3.3.1 Introduction . 40

3.3.2 Practical issues . 40

3.3.3 First experiment: Effects of kernels 41

3.3.4 Adding more features . 42

3.3.5 Adding context frames . 43

3.3.6 Consistency experiment . 45

3.3.7 Last experiment: Including additional training data 46

3.3.8 Generalisation performance of the One vs. One classifier . . . 48

3.3.9 Conclusion . 49

3.4 DAGSVM classifier . 50

3.4.1 Results and conclusions . 51

3.5 Binary tree classifier . 51

3.5.1 Introduction . 51

3.5.2 Implementation . 52

3.6 Conclusion . 54

v

4 Probability outputs 56

4.1 Estimating posterior probabilities . 56

4.2 Conclusion . 58

5 Conclusion and future work 60

A Kernel Requirements 63

A.1 Symmetry Condition . 63

A.2 Mercer’s Theorem . 63

B Phonemes in the TIMIT speech database 65

C Binary Tree Structure 67

Bibliography 69

vi

Chapter 1

Introduction

The task of this thesis is to create learning machines that can classify sequences of

acoustic observations. Consider the situation shown on figure 1.1. Given an ordinary

spoken English sentence (labelled (a) on figure), this sentence is split up into tiny

fragments of speech, also known as frames ((b) on figure). These are converted into

vectors of fixed length (c), and fed in to the learning machine (d). It is the goal of the

learning machine to classify each of these vectors to one of 40 targets, representing the

phonemes in the English language (e).

Figure 1.1: Overview of frame classification.

The idea of classifying frames is widely used in both isolated and continuous

1

Chapter 1. Introduction 2

speech recognition, and is known as frame-by-frame classication. The predictions

found by the learning machine can be passed on to a statistical model, to find the

most likely sequence of phonemes that construct a meaningful sentence. Hence, the

classification of frames can be seen as one of the basic units in a speech recognition

system1.

In this thesis, the chosen learning machine for the task is Support Vector Machines

(SVMs). SVMs are a fairly new technique for pattern recognition, created by Vap-

nik ([60]). They have been applied to many different problems, and have been very

successful in areas such as face recognition ([45]), text-categorisation ([28] and [13]),

time-series prediction ([42]), and hand-written digit recognition ([55]). In many of

these areas, SVMs have shown to out-perform well-established methods such as Neu-

ral Networks and Radial Basis Functions.

This thesis only considers the use of SVMs for pattern classification, although they

have also been applied to other areas such as Regression ([56]) and Novelty detection

([58]). In classification, SVMs are binary classifiers. They are used to build a decision

boundary by mapping data from the original input space to a higher dimensional fea-

ture space (see figure 1.2), where the data can be separated using a linear hyperplane.

Figure 1.2: The mapping of non-linearly separable training samples from input space to

a linearly separable representation in feature space.

Instead of choosing a hyperplane that minimises the training error, SVMs choose

the hyperplane that maximises the margin of separability between the two sets of data

points. This selection can be viewed as an implementation of the Structural Risk Min-
1Naturally, there are recognition systems that does not use this approach.

Chapter 1. Introduction 3

imisation principle, which seeks to minimise the upper bound on the generalisation

error ([60]). Typically, an increase in generalisation error is expected when construct-

ing a decision boundary in higher-dimensional space. By maximising the margin, this

expected degradation of performance, also referred to as the curse of dimensionality,

is counteracted.

The selection of hyperplane in feature-space requires the SVM to evaluate scalar

inner products in feature-space. This can be very complicated and computationally

expensive if the feature-space is of much higher dimensions than input-space. Fortu-

nately, the explicit calculation is not needed due to a functional representation termed a

kernel. The kernel calculates the inner product in feature-space as a direct operation of

the training samples in input-space. Using an effective kernel, this can be done without

any significant increase in computational cost.

By using SVMs in speech recognition, it is hoped that some of the performance

gains shown by SVMs on other tasks might be mapped over to this domain. Limited

work has been done to apply SVMs to the problem. The results so far have been

promising, but several significant hurdles muct be overcome if SVMs are to be viewed

as a viable and competitive alternative to the established methods. Problems include:

� The problem of multi-class classification. SVMs are inherently binary classifiers.

A method for effectively extending the binary classification to the multi-class

case is needed. This method must be able to retain the good generalisation ability

of the binary classifier.

� Estimation of posterior probabilities. Most speech recognition systems are based

on statistical models that combine low-level acoustic information with higher-

level knowledge of the language. For an SVM classifier to be used in such a

system, it needs to be able to return class conditional probabilities.

� Choosing an appropriate kernel. The kernel affects the performance of the SVM.

A method for choosing and parametrising the kernel is needed.

� Working in a real-time environment. Since most speech recognition systems

are created for real-time communication, the complete system must be able to

Chapter 1. Introduction 4

process the spoken data as it is dictated. For the SVMs to function in such an

environment, it must be extremely effective.

I have chosen to focus on the first three of the four problems. Even though having

a fast and effective method is important, I feel it is more important to examine the

feasibility of applying SVMs to the task without being concerned about speed. Other

methods have been introduced in a similar fashion. Hidden Markov Models (HMMs),

the method used in commercial speech recognition systems, would be hideously slow

if it was used without any optimisation techniques. It is because of techniques for

quickly removing unlikely predictions early on in the recognition process that makes

HMMs suitable for real-time recognition2.

Figure 1.3: Difference between phoneme recognition and frame-by-frame classification.

The small box encloses the task of a frame-by-frame classifier, and the big box encloses

the task of a phoneme recogniser. After the frames have been classified in (e), the

dynamic programming method (f) finds the most likely sequence of phonemes (g).

The task of frame-by-frame classification is typically done in context of phoneme

recognition. As the name implies, phoneme recognition consists of identifying the
2The optimisation techniques are better known as pruning.

Chapter 1. Introduction 5

individual phonemes a sentence is composed of. This differs slightly from frame-by-

frame classification in the sense that phonemes typically have durations much longer

durations3. Hence, one phoneme spans several frames, and a dynamic programming

method is required to transform the frame classifications into phoneme predictions.

This difference is shown on figure 1.3.

I have chosen not to perform complete phoneme recognition, because I would need

to include a dynamic programming method. This may seem fairly straightforward,

but to do it properly, it would involve introducing large areas of speech recognition

such as decoding techniques and the use language models. This would detract from

the focus of the thesis. Furthermore, by concentrating on the task of frame-by-frame

classification, there will be no other methods to potentially “distort” the performance

of the SVMs.

1.1 Summary of literature

Various techniques have been applied to the problem of frame-by-frame classification.

This section will first review Recurrent Neural Networks. They are a method that has

lead to results substantially better than any other reported in literature. Subsequently,

the few previous attempts to apply SVMs to the task will be described. These will be

reviewed with reference to the three hurdles described above.

1.1.1 Recurrent Neural Networks

In 1991, Robinson ([50]) created a phoneme recognition system that has produced

the best phoneme recognition results reported in literature4. He improved the system

over the years, and in 1994 he reported a phoneme accuracy of 80%, and a frame-

by-frame accuracy of 70.4%5. Until recently, this was the best-reported result on the

task. The system utilized a time-delayed recurrent neural network (RNN), a variant of
3Typically, frames are extracted with 10 ms intervals. In average, phonemes lasts 65ms ([25]).
4The project involved full phoneme recognition. However, frame classification results were also

reported.
5This result was found by mapping the 61 phoneme targets used by Robinson down to the 40

phoneme targets used in this thesis (thanks to Simon King for providing this result).

Chapter 1. Introduction 6

the standard neural networks specifically invented for the task. In contrast to a typical

Neural Network, predictions are time-delayed so future frames are considered before

a decision is made. Moreover, previous predictions are fed back into the network to

add context without having to feed multiple frames of data to the classifier. Combined

with numerous metrics for evaluating predictions, this created an effective classifier

for handling segmented speech data. It was extended to incorporate knowledge of

language, and currently competes head-to-head with commercial speech recognition

packages.

In 1998, Chen and Jamieson reported results based on an extensive set of experi-

ments ([5]). They used an almost identical approach to Robinson’s RNN, but included

a new criterion function that enabled them to directly maximise the frame classifi-

cation accuracy. Even though their phoneme recognition rate of 79.9% was slightly

worse than Robinson’s result, their best frame classification result was 74.2%.

1.1.2 Support Vector Machines

A few efforts have been made to apply SVMs to the task of speech recognition.

In [9], Clarkson created a multi-class SVM system to classify phonemes6. He

assumed phoneme boundaries to be known, and mapped the variable length phonemes

to fixed length vectors. This was done such that the most of the important information

was retained, and thus the problem was considerably easier than that of frame-by-frame

classification7. Still, the reported result of 77.6% is extremely encouraging and shows

the potential of SVMs in speech recognition. Additionally, the multi-class classifier

used in the paper proved that it is possible to successfully extend the generalisation

performance of the binary SVM to the multi-class case.

In [19], a hybrid SVM/HMM system was developed. The SVMs were used to

generate predictions that were fed to the HMM. Similarly to the above paper, the

classification task of the SVM was to classify phonemes where the phone boundaries

were known. For this, the same mapping was used as in [9]. The performance of the

system was compared with a standard HMM system where Gaussian Mixture Mod-
6The system was a hybrid between frame-by-frame classification and phoneme recognition.
7The result cannot be compared with the results of the RNNs from the previous section

Chapter 1. Introduction 7

els (GMMs) were used instead. On the OGI Alphadigits speech database ([10]), the

SVM/HMM outperformed the GMM/HMM system by a relative 10%. Attractively,

only a fifth of the training data were used in the SVM/HMM hybrid compared to that

of the GMM/HMM system. Additionally, the resulting SVM/HMM system had an

order of magnitude less free parameters than the GMM/HMM system.

In [6], the practical issues of training SVMs in the context of speech recognition

were examined. Problems with non-converging training algorithms were solved, and

two multi-class systems were created and shown to produce good results on a hand-

picked subset of the TIMIT speech corpus ([20]).

In addition to recognition, SVMs have also been used in other speech and sound

applications. These include speaker identification ([52]), musical instrument classifi-

cation ([38]), utterance verification ([36]), and web audio classification ([41]). These

will not be discussed in details, but these are worth mentioning since they all produced

promising results.

The above papers all show the potential of using SVMs in speech recognition.

Some have discussed and attempted to tackle some of the problems involved, but the

SVMs have not yet been applied to a full classification problem where no assumptions

are made about the speech data. Furthermore, most of the above papers created their

own benchmark systems. Since these were not the main focus of the papers they may

may not have been completely optimised, and hence their results may have been sub-

optimal. It is the focus of this thesis to evaluate SVMs on a well-known and recognised

classification task, to allow a direct comparison with the best results found in literature.

1.1.3 Overview of thesis

The rest of the thesis is organised as follows:

In chapter 2, I explain the concepts behind linear and non-linear SVMs, feature

space, and the role of the kernel. Additionally, I describe several techniques for ex-

tending the inherently binary SVMs to multi-class problems.

In chapter 3, experiments using three multi-class methods will be presented. The

experimental results will be discussed and compared with the best results found in lit-

erature.

Chapter 1. Introduction 8

In chapter 4, I extend the SVM classification process, to enable SVMs to return poste-

rior probabilities.

Finally, chapter 5 will summarise findings and give directions for possible future

research.

Chapter 2

Support Vector Machines

2.1 Introduction

In this chapter, the Support Vector Machine formulation for pattern classification will

be described1. The formulation defines SVMs as a maximum margin classifier, which

implements the Structural Risk Minimisation principle. This principle seeks out to

minimise the upper bound of the generalisation error.

The chapter will start by explaining the statistical learning theory upon which

SVMs are based. Secondly, the advancement of SVMs from being a linear maximum

margin classifier to a non-linear classifier will be carefully described. Finally, I will

describe the most common methods for extending the binary SVMs to handle multiple

classes.

2.2 Statistical Learning Theory

SVMs seek to solve a binary classification problem. In this section, the statistical

foundation behind the technique will be described in the context of such a problem.

Moreover, the theory will be compared to what is employed in other learning machines
1This chapter is loosely based on [4], [63], [6], and [22].

9

Chapter 2. Support Vector Machines 10

2.2.1 Binary Classification Problem

The general two-class classification problem can be stated as follows.

1. Given a data set D of N samples: �x1�y1� ��x2�y2� � � � � ��xN�yN�. Each sample

is composed of a training example xi of length M, with elements xi � �x1�x2� � � � �xM�,

and a target value yi � ��1��1�.

2. The goal is to find a classifier with decision function, f �x�, such that f �x i� �

yi���xi�yi� � D.

The performance of such a classifier is measured in terms of the classification error

defined in equation (2.1).

error� f �x��y� �

�
0 if f �x� � y

1 otherwise
(2.1)

2.2.2 Empirical Risk Minimisation

Consider a learning machine with a set of adjustable parameters α. Given the above

binary classification task, the machine seeks to find α such that it learns the mapping

x �	 y. This will result in a possible mapping x �	 f �x�α� that defines the machine.

The performance of the machine is measured by the empirical risk error:

Remp�α� �
1
N

N

∑
i�1

error� f �xi�α��yi� (2.2)

where N is the size of the training set and α the set of adjustable parameters.

This risk minimisation principle is called Empirical Risk Minimisation (EMP).

Most learning machines implements this principle, including Neural Networks and

most instance-based methods. This has lead to many efficient and effective classifiers.

However, there is one problem with these machines. If the complexity of a machine

is high, it has a tendency to overfit the data. This is because the minimisation principle

does not consider the capacity of the machine.

Chapter 2. Support Vector Machines 11

2.2.3 Structural Risk Minimisation

In contrast to EMP, the Structural Risk Minimisation principle (SRM) considers the

complexity of the learning machine when it searches for α to learn the mapping x �	 y.

This is done by minimising the expected risk:

Rexp�α� �
�

error� f �xi�α��yi�dP�x�y� (2.3)

where P�x�y� is a prior probability.

Unfortunately, we cannot explicitly calculate the expected risk since P�x�y� is un-

known in most classification tasks. Instead, an estimate of this risk is used. [61]

showed that the upper bound on this error is:

Rexp�α�
 Remp�α��VC�H� (2.4)

where VC�H� is the Vapnik Chervonenkis (VC) dimension (explained below).

Hence, we can estimate the risk by computing this upper bound. This is done by

calculating Remp from the training data, and estimating VC�h� of the learning machine.

2.2.4 VC dimension

The VC dimension is a measure of the capacity of a learning machine. By definition,

it is the largest set of points X that can be shattered by the learning machine. To

explain what shattered means, consider the training set X . If a learning machine with

mapping x �	 f �x�α� can correctly assign all possible labels to the instances in X , then

this learning machine is said to shatter X . Consequently, the VC dimension is closely

related to the complexity of the learning machine.

Learning machines with a large number of free parameters, and therefore a large

VC dimension, are generally expected to have a low empirical risk since they can

model more complex decision surfaces2. However, based on the above formula of the

expected risk, we can also conclude that the confidence in the empirical risk decreases

if the complexity of the learning machine increases. This relation is shown in figure
2This is not always the case. Some learning machine with a high number of free parameters can have

a low VC dimension, and vice-versa.

Chapter 2. Support Vector Machines 12

2.1. The SRM can therefore be described as a trade-off between the quality of the

approximation of the data and the complexity of the approximating function [60].

How SVMs are constructed to implement the SRM is described in the following

sections.

Figure 2.1: Relation between empirical risk, VC dimension and expected risk (from

[18]).

2.3 Linear Classifiers

In the following two sections, SVMs will be formulated as a maximum margin clas-

sifier3. There are two cases of linear classifiers to consider. In section 2.3.1, the case

where a perfect mapping x �	 f �x�α� can be learned will be explained. Subsequently,

in section 2.3.2, the case where a perfect mapping is unattainable is described.

2.3.1 The Separable Case

Consider the binary classification problem of an arrangement of data points as shown

in figure 2.2(a). We denote the “square” samples with targets yi � �1 as positive

examples, belonging to the set S� . Similarly, we define the “round” samples with

yi ��1 as negative examples, belonging to S� .
3From now on the learning machine will be called a classifier.

Chapter 2. Support Vector Machines 13

Figure 2.2: (a) a separating hyperplane. (b) The hyperplane that maximises the margin

of separability

One mapping that can separate S� and S� is:

f �x�y� � sign�w �x�b� (2.5)

where w is a weight vector and b the offset from origin.

Given such a mapping, the hyperplane

w �x�b � 0 (2.6)

defines the decision boundary between S� and S� . The two data sets are said to be

linearly separable by the hyperplane if a pair �w�b� can be chosen such that the map-

ping in equation (2.5) is perfect. This is the case on figure 2.2(a), where the “round”

and “square” samples are clearly separable.

2.3.1.1 A Maximum Margin Separating Hyperplane

There are numerous values of �w�b� that create separating hyperplanes. The SVM

classifier finds the only hyperplane that maximises the margin between the two sets.

This is shown in figure 2.2(b). The data sets are said to be optimally separated when

such a boundary is found.

Chapter 2. Support Vector Machines 14

To find the optimal hyperplane, notice how equation (2.5) is a discriminant func-

tion. Therefore, we can scale the hyperplane by k to k�w � x� b�, and still have the

same discriminant function. Hence, we can choose to scale w and b as we like. If we

choose a scaling such that � f �xnear��w�b��� � 1, where xnear is the training example

nearest the decision plane, we get:

w �xi�b
�1 f or yi ��1

w �xi�b
�1 f or yi ��1
(2.7)

Or written in a more compact representation:

yi �w �xi�b�
�1 �i � D (2.8)

Looking at figure 2.2(b), if we define the margin as d�� d� it is obvious that for

the margin to be maximal, d� � d� . Moreover, consider the positive training example

x� � S� with the shortest perpendicular distance d� from the separating hyperplane

(marked as a black “square” on figure 2.2(b)). This example will lie on the hyperplane

x� �w� b � 1 and satisfy the equality in equation (2.8). Similarly, we can find a

negative training example x� � S�that satisfies x� �w� b � �1. We denote these

hyperplanes H� and H� .

The margin between the hyperplanes can be reformulated as:

d��d� � �w�x��b�
�w� � �w�x

�

�b�
�w�

� 1
�w� ��w �x��b�� �w �x��b��

� 2
�w�

(2.9)

H� and H� both have the same normal w, and are therefore parallel. Since no

training points fall between them, the hyperplane that optimally separates the data is

the one that minimises �w�2, subject to constraints in equation (2.8).

Notice, that this solution is independent of the bias b . Changing b will move the

optimal hyperplane in the direction of w and the maximum margin will remain the

same. However, the separating hyperplane will no longer be optimal since it will be

nearer to one of the classes (d� �� d��.

Chapter 2. Support Vector Machines 15

2.3.1.2 Structural Risk Minimisation and the optimal hyperplane

To explain how the SRM principle is implemented by maximising the margin of sepa-

rability, suppose an upper bound on �w�2 exist:

�w�
 A (2.10)

From equation (2.8) we then get:

di
 A��i � ����� (2.11)

So the separating hyperplanes cannot be closer than 1�A to any data points in the

two sets

Consider the arrangement of data points in figure 2.3(a). The number of possible

separating hyperplanes is shown. Then consider the situation in figure 2.3(b). If no

hyperplane can be closer than 1�A from the data points, this reduces the number of

possible separating hyperplanes.

Figure 2.3: (a) All hyperplanes that separates the data points are shown. (b) The

number of possible separating hyperplanes is reduced when an upper bound A is put

on �w�.

From [60], the VC dimension, VC�H� , for a classifier that can find all such sepa-

rating hyperplanes when an upper bound is put on �w� is:

Chapter 2. Support Vector Machines 16

VC�H�
 min�R2A2�N��1 (2.12)

where A is the upper bound on �w�, N the number of dimensions of the data points,

and R is the radius of the hyper sphere enclosing all data points.

Therefore, a smaller �w� reduces the number of separating hyperplanes. Conse-

quently, minimising �w�2 is equal to minimising the upper bound of the VC dimen-

sion.

2.3.1.3 Lagrangian formulation

The task to solve is a minimisation problem of �w�2with a set of inequality constraints

from from equation (2.7)4. The theory of Langrangian multipliers is well known to

efficiently solve this problem ([3]).

The Lagrangian formulation of the minimisation problem is:

Minimise

�
LP �

1
2
�w�2�

N

∑
i�1

αiyi �xi �w�b��
N

∑
i�1

αi

�
(2.13)

Subject to constraints:

w �
N

∑
i�1

αiyixi (2.14)

N

∑
i�1

αiyi � 0 (2.15)

This is called the primal formulation. It is a convex quadratic programming prob-

lem because the objective function Lp itself is convex.

Since the constraints are equality constraints, the dual formulation can be found by

substituting the inequality constraints into the objective function. The resulting dual

formulation is:

Maximize

�
LD �

αi

∑
i�1

�
1
2

N

∑
i� j

αiα jyiy jxix j

�
(2.16)

4The reason why the L2-norm is specifically chosen in �w�2 is because elegant techniques exist to
optimise convex functions with constraints.

Chapter 2. Support Vector Machines 17

Subject to constraints:

N

∑
i�1

αiyi � 0 (2.17)

In conclusion, SVM training can be considered as a problem of maximising LD

with respect to α i, subject to constraints (2.17) and positivity of α i. The resulting

optimal hyperplane is given by:

w �
N

∑
i�1

αiyixi (2.18)

and bias b:

b ��
1
2

w�x��x�� (2.19)

This solution is a linear combination of the x is. An important detail is that α i � 0

for every xi except the ones that lie on the hyperplanes H� and H� . These points,

where αi
 0, are called Support Vectors. Hence the name Support Vector Machines.

The number of support vectors in the solution is typically much less than the total

number of training examples. This is referred to as the sparsity of the solution.

An interesting observation can be found if all training examples except the support

vectors were removed before training. In this case, after training the solution would

remain the same. Also notice that the quadratic programming problem is convex, i.e.

there are no local minima. Consequently, the solution will always find the global

minima, and thus be optimal. This gives SVMs an advantage over other optimisation

techniques such as Neural Networks, where local minimas exist.

2.3.1.4 Classification

When we have solved the optimisation problem and found the optimal separating hy-

perplane, the SVMs can attempt to predict unseen instances. An instance x is classified

by determining on which side of the decision boundary it falls. To do this, we compute:

f �x� � sign�w�x�b� � sign

�
n

∑
i�1

αiyi�xi �x��b

�
(2.20)

Chapter 2. Support Vector Machines 18

and thereby assign it to one of the target labels +1 or –1, representing the positive and

negative examples. Note that the input instance x only enters this function in the form

of its inner product. This is exploited later when the extension to the non-linear case is

done.

2.3.2 Non-separable case

So far, the SVM formulation has been restricted to the case where a perfect mapping,

x �	 f �x�α�, can be learned. In general, though, most real-world data sets do not satisfy

this condition. An extension of the above formulation to handle non-separable data is

needed, and the hyperplane must be found such that the resulting mapping is the best

possible.

The extension is done by creating an objective function that trades off misclassifica-

tions against minimising �w�2. Misclassifications are considered by adding a “slack”

variable ξ
 0 for each training example, and require that:

w �xi�b
�1� ξ f or yi ��1

w �xi�b
�1� ξ f or yi ��1
(2.21)

This adjustment allows the old constraints in equation (2.7) to be violated, but in

a way that a violation causes a penalty. The size of the penalty for each misclassified

example, the value of ξi, is typically the distance from the decision boundary to the

training example5. On figure 2.4, an overview of a non-separable case is shown.

The new problem we are faced with is to minimise the sum of misclassification

errors as well as minimising �w�2:

�w�2�C
�
∑i ξi

�k
(2.22)

where C is a regularisation parameter used to control the relation between the slack

variables and �w�2. k is an integer with typical values of 1 or 2.

This minimisation problem is also convex as in the linearly separable case. If

we choose k to be 1, it has the advantage that all ξ i’s and their Lagrange multipliers
5Other error measures exist, e.g. the squares distance.

Chapter 2. Support Vector Machines 19

Figure 2.4: A non-separable case. The encircled data point is misclassified and thus

has a positive ξ.

disappear from the dual Langragian problem ([4]. This objective function of the dual

formulation becomes:

Maximize

�
LD �

αi

∑
i�1

�
1
2

N

∑
i� j

αiα jyiy jxix j

�
(2.23)

Subject to constraints:

0
 αi
C (2.24)

N

∑
i�1

αiyi � 0 (2.25)

When optimised, the solution is still given by:

w �
N

∑
i�1

αiyixi (2.26)

and:

b ��
1
2

w�x��x�� (2.27)

Chapter 2. Support Vector Machines 20

where x� is the positive example with shortest perpendicular distance from the deci-

sion boundary, and x� is closest negative example.

To compare this solution to that of the linearly separable case, the only difference

is the added constraint (equation (2.24)). Now α is have an upper bound of C .

The support vectors in this solution are not only the training examples that lie on

the hyperplane boundary. It is also the training examples that either falls between the

two hyperplanes H� and H� or falls on the wrong side of the decision surface. Hence,

one can view the support vectors as modelling the error of the boundary between the

two classes.

2.4 Non-linear Classifiers

In the above section, we described how the linear SVM could handle misclassfied

examples. Another extension is needed before SVMs can be used to effectively handle

real-world data: the modelling of non-linear decision surfaces.

The method for doing this was proposed by [23]. The idea is to explicitly map the

input data to some higher dimensional space, where the data is linearly separable. We

can use a mapping:

Φ : ℜ N 	 ℑ (2.28)

where N is the dimension of the input space, and ℑ a higher-dimensional space, termed

feature space.

In feature space, the technique described in the above section can be used to find

an optimal separating hyperplane. When the hyperplane is found, it can be mapped

back down to input space. If a non-linear mapping Φ is used, the resulting hyperplane

in input-space will be non-linear.

This process can be described as a three step process, as shown on figure 2.5.

2.4.1 The “Kernel Trick”

Most often, finding the optimal hyperplane in the higher dimensional feature space is

both complicated and computationally expensive. It was not before Vapnik, Boser and

Chapter 2. Support Vector Machines 21

Figure 2.5: The role of the kernel (from [43]). (a) The data is mapped from input-space

to feature-space by a mapping Φ. (b) The optimal separating hyperplane is found. (c)

The hyperplane is mapped back down to input-space, where it results in a non-linear

decision boundary.

Guyon ([23]) showed that an old trick by [35] can be used, called the “kernel trick”.

Using this trick, the above three steps could be combined into one.

In the training phase described in the previous section, notice in equation (2.23)

that only includes the training data in the form of their scalar inner products xi � x j.

Thus, a mapping from input-space to feature-space can be achieved via a substitution

of the inner product with:

xi �x j 	 Φ�xi� �Φ�x j�

Fortunately, calculating each Φ explicitly is not needed. Instead, we can use a

Chapter 2. Support Vector Machines 22

functional representation K�xi�x j� which computes the inner product in feature space

as a direct operation upon the data samples in their original input space:

K�xi�x j� � Φ�xi� �Φ�x j� (2.29)

The functional representation is called a kernel, and SVMs are a member of the

broader class of kernel methods [54]. If the feature-space is of much higher dimension

than the input space, this implicit calculation of the dot-product removes the need to

explicitly perform calculations in feature space. Consequently, if an effective kernel is

used, finding the separating hyperplane can be done without any substantial increase

in computational expense6.

2.4.2 Training

The optimisation problem changes slightly to accommodate the kernel. If we substitute

the inner product in equation (2.23) with the kernel function, the new optimisation

problem we are faced with becomes:

Maximize

�
LD �

αi

∑
i�1

�
1
2

N

∑
i� j

αiα jyiy jK�xi�x j�

�
(2.30)

Subject to same constraints as in the linear case:

0
 αi
C (2.31)

N

∑
i�1

αiyi � 0 (2.32)

2.4.3 Classification

Luckily, the same trick can be used in classification. In equation (2.20), where unseen

examples x and support vectors xi are only included through their inner product xix.

So we can replace xix with K�xi�x� to get:
6In fact, in most cases the extra computational expense is so small that it takes roughly the same time

to find a non-linear optimal hyperplane than to find a optimal linear hyperplane.

Chapter 2. Support Vector Machines 23

f �x� �
N

∑
i�1

αiyiK�xi�x��b (2.33)

where b the offset of the decision boundary from origin.

Classification an unseen examples, x, are subsequently done by:

g�x� � sign� f �x�� (2.34)

2.4.4 Kernels

It is not all functions that can be used as kernels. Feasible kernels must satisfy the

following two conditions:

1. The kernel function must be symmetric.

2. It must satisfy Mercer’s Theorem ([3]).

these conditions are described in details in Appendix A.

Some popular kernels includes:

� The homogenous polynomial kernel:

K�xi�x j� �
�
xi �x j

�d
(2.35)

If input-space is ℜ N , this kernel maps the samples into a fixed �N�d�-dimensional

space7. The resulting the decision boundary will be polynomial ([4]).

� The Gaussian kernel:

K�xi�x j� � e
��xi�x j�

2
�

2σ2

(2.36)
7The value of d is also termed a kernel-parameter as itmust be defined by the user before training

begins.

Chapter 2. Support Vector Machines 24

This kernel centres a Gaussian with variance σ8 on each support vector. This

kernel is also called the Radial Basis Function Kernel, since the resulting clas-

sifier is closely related to the Radial Basis Function (RBF) learning machine

([22]).

� The Linear kernel:

K�xi�x j� � xi �x j (2.37)

which is results in exactly the same objective function as in equation (2.23).

Note, that this kernel is simply a specific case of the Polynomial kernel with

d � 1 .

2.5 Choosing the kernel and C

Which kernel is best? How can we select optimal values of the kernel parameters?

These are obvious questions that arise with so many different mappings to choose

from.

A more formal metric for choosing the best kernel is provided by the upper bound

on the VC dimension ([22]). However, even though the VC dimension is describes

the complexity and flexibility of the kernel, it does not provide practical proof that the

chosen kernel is “best”. Unless the choice can be validated by numerous independent

tests on different practical problems, methods such as cross-validation is still to be

preferred when making the kernel selection.

The penalty term, C , also needs to be defined by the user. Again, there is no easy

method for selecting it’s value aside from evaluating the resulting model’s performance

on a validation set.
8Similarly to d , σ is also a user-defineable kernel-parameter.

Chapter 2. Support Vector Machines 25

2.6 Bias in SVMs

Recall the training process of the linearly separable case (section 2.3.1.1). As men-

tioned, the pair �w�b� is found such that the decision boundary is placed exactly be-

tween the two hyperplanes H� and H� . Also recall that the value of b can move the

decision boundary in direction of w towards either of H� or H� . This is why b is also

denoted the implicit bias, since it is learned in the training process.

However, in some cases it is desired to have a decision boundary that is not placed

learned in the training process. For this purpose, an explicit bias can be introduced via

the kernels. This is done by adding a term p to the kernel function. In the case of the

polynomial kernel, this is typically done as:

K�xi�x j� �
�
xi �x j � p

�d

Adding the explicit bias leads to a different decision boundary. This can be used to

push the boundary towards one of the two data sets. In most cases, this will not lead

to improvements. However, it is often done in practical implementations to make the

training process slightly more efficient and stable ([29]).

2.7 Practical Issues

To implement the SVM theory is not straightforward. Even though the quadratic opti-

misation problem in equation (2.30) can be solved using existing packages specifically

designed to solve such a problem9, these can typically only be used on small problems

due to memory and run-time restrictions. The following two techniques are used to

overcome this problem and make large-scale classification possible:

� Chunking ([44]). This technique spliits up the training set into smaller sub sets,

where each subset is easily solvable by a quadratic programming package. The

process can be described as follows: After the first initial subset has been opti-

mised, the Support Vectors10 are kept, and the remaining training examples are
9For example LOQO ([59]).

10Training examples with ai � 0 in equation (2.30).

Chapter 2. Support Vector Machines 26

thrown away. The next subset is then added to this working set, and optimi-

sation is performed again. This process is repeated until all training data have

been treated in the working set. Chunking speeds up training drastically. How-

ever, when solution is not sparse, the working set becomes large and the training

process can become lengthy.

� Sequential Minimal Optimisation ([46]). In this optimisation procedure, the

training problem is decomposed into tiny tasks of optimising only two of the

ai s in equation (2.30). The remaining ai s are kept fixed, and these two values

are easy and fast to find11.

These two techniques are implemented in the most popular toolkits12. However,

even though they provide drastically reduced training times, the relation between amount

of training data and training time still remains non-linear. Consequently, large-scale

classification is a time-consuming task.

Another important issue to bear in mind is normalisation. The toolkits requires the

training samples to be normalised, otherwise the run-time will increase, and, in some

cases, the optimisation process will fail to converge ([29]).

2.8 Multi-class SVMs

Many real-world data sets involve multiple classes. Since SVMs are inherently binary

classifiers, techniques are needed to extend the method to handle multiple classes. The

goal of such a technique is to map the generalisation abilities of the binary classifiers

to the multi-class domain.

In literature, numerous schemes have been proposed to solve this problem. For

example [16], [39], [53], [21], [26], and [15]. This section will not try to describe all

of these, but concentrate on the ones that have shown to produce good generalisation

performance in practice.
11To go into more details of this optimisation procedure would require an extensive description. Refer

to [46] for a detailed description.
12SVM-Light and SVMTorch. See [29] and [12].

Chapter 2. Support Vector Machines 27

2.8.1 One vs. One classifier

The One vs. One classifier is a system proposed by Friedmann ([16]), and has become

the most popular and successful multi-class SVM method. The principle behind the

method is very simple. It creates a binary SVM for each combination of classes13

possible, and each unseen example are classified to the class that “wins” most binary

classifications14. This method is also called the voting scheme, since each binary SVM

classification assigns one “credit”, or “vote”, to one of the two competing classes.

To describe the classifier in a more formal way, let the set of classes be C . Fur-

thermore, let the size of C be K. There will be one binary SVM for each class-pair�
ci�c j

�
��ci�c j �C� i �� j. The resulting number of binary classifiers is K�K�1��2 ,

and each class is used in K�1 models.

After training the K�K � 1��2 models, classification of unseen examples can be

performed. Recall the function which classifies unseen examples (equation (2.34)).

Let us denote the function associated with the SVM model of
�

ci�c j
�

as:

g�x�i� j � sign� f �x�i� j� (2.38)

An unseen example, x, is then classified as:

f1vs1�x� � argmax
i

K

∑
i�1

K

∑
j�1�i�� j

Vi� j�x� (2.39)

where:

Vi� j�x� �

�
1 ifgi� j�x� � 1

0 ifgi� j�x� ��1
(2.40)

� The advantage of splitting up the multi-class problem into multiple binary sub-

problems is that the different decision boundaries can be creates for each class-

pair. This potentially results in a very complex decision boundary. Furthermore,
13A class denotes a target label. “Classes” denotes the set of possible target labels. These terms will

be used inter-changeably throughout the thesis.
14A class “wins” a classification if the unseen example is classified to lie on it’s side of the decision

boundary in equation (2.34)

Chapter 2. Support Vector Machines 28

due to the manner in which classification is carried out, even if an unseen exam-

ple is misclassified by one binary SVM, it still has a chance of being correctly

classified as there are K�1 binary models per class.

� The classifier also has some obvious disadvantages. If the problem contains

many classes, i.e. K is large, the number of binary SVMs required, K�K�1��2

, will consequently explode. Correspondingly, the number of binary SVMs also

makes classification slow as all need to be evaluated before a decision is made.

Nevertheless, this classifier has produced some of the best results on multi-class tasks

found in SVM literature ([39]).

2.8.2 One vs. Rest

In this classification scheme, K binary SVMs are built. Each attempts to build a deci-

sion boundary separating one class, ci, from the rest. Creating the models are accom-

plished by assigning the label “+1” to ci, and the same binary target label, “-1”, to all

remaining classes.

Classification of an unseen example, x, is done by computing the function value

of equation (2.33) for each binary SVM model. This differs from the previous clas-

sification scheme, which use equation (2.34). The motivation for using this decision

function is to avoid “draws”. I.e. being unable to predict a winner if more than one ci

“wins” it’s corresponding binary SVM. Instead, the class that maximises the value of

equation (2.33) will be chosen. The resulting classifier is:

f1vsR�x� � argmax
i

fi�x�i � 1� ����K (2.41)

where fi�x� is the SVM model separating the i th class from the rest.

� The advantage of this method is the few SVMs involved. It only needs to build

K models, and consequently evaluation is much faster than the One vs. One

classifier.

� However, it has several drawbacks. By only building K classifiers the resulting

decision boundary can never be as complex as the boundary of the One vs. One

Chapter 2. Support Vector Machines 29

classifier. Furthermore, since all classes are involved in each SVM, training the

SVMs can be very time consuming. Finally, in each binary SVM it is often diffi-

cul to isolate one class from the rest. All training examples are weighted equally,

and the uneven distribution of training examples between the isolated class and

the remaining classes makes separation difficult. To improve separation an ex-

plicit bias towards ci must be used (as described in section 2.6).

2.8.3 DAGSVM

DAGSVM stands for Directed Acyclic Graph SVM. It is a multi-class method proposed

by Platt ([27]), which employs the exact same training phase as the One vs. One clas-

sifier. I.e. it creates K�K � 1��2 binary classifiers. However, it distinguishes itself in

the classification phase by constructing a rooted binary tree structure with K�K�1��2

internal nodes and k leaves (see figure 2.6, below). Each node in the graph contains a

binary classifier of i th and j th classes.

Classification is performed as shown on the figure.

� The advantage of using the DAGSVM is that it only needs K � 1 evaluations to

classify an unseen example. Appreciably, we still retain the complex decision

surface from the One vs. One classifier.

� However, it is not superior to the above methods. A disadvantage is it’s stability.

In the classification process, if one binary misclassification happens, the unseen

example will be misclassified. As mentioned earlier, this is not the case with the

One vs. One classifier, and thus the robustness of this method may not be as

high.

2.8.4 Binary Tree

The last multi-class method to describe is the binary tree classifier. It is based on a

hierarchical structure, and can best described as a SVM version of a Decision Tree

([48]). The idea of growing a tree structure from data is very common in machine

learning, and used in learning machines such as Decision Trees, k-Nearest Neighbour

Chapter 2. Support Vector Machines 30

Figure 2.6: Decision graph for a classification task with 4 target classes. Starting at the

root node (see (a) on the figure), the SVM belonging to the node is evaluated, using

equation (2.12). (b) It moves down the tree to either left or right child depending on the

outcome. (c) It repeats this process until a leaf k is reached, and assigns the unseen

example to the k th class (from [27]).

Trees ([40]), and CART models ([30]). However, although this classifier seems appar-

ent considering the binary nature of SVMs, I have not found this classifier mentioned

in SVM literature.

The classifier I propose is a rooted asymmetrical tree structure as shown on figure

2.7. In contrast to the DAGSVM classifier, the nodes in the binary tree can contain

multiple classes, splitting these up into two equally sized subsets (see (a) on figure).

Each child node contain another binary SVM with classes form one of the two subsets

(see (b) on the figure). As we move down the tree, the number of classes contained in

each node decreases until only one class remains (see (c)).

The problem of growing trees is discussed extensively in literature (for example

[33]). Several algorithms exist for this task, for example K-means ([40]), and Additive

Chapter 2. Support Vector Machines 31

Figure 2.7: Schematic of a binary tree on a 7-class problem.

Similarity Trees ([51])15.

To classify an unseen example x, consider figure 2.7 once again. Classification

is completed as follows. (a) First, the root node the binary SVM is evaluated. (b)

Depending on which side of the decision boundary x falls, it moves either down to the

left child or the right child. (c) This process is repeated until a leaf is reached. This

leaf indicates the classification of x.

� It is hoped that the generalisation ability shown by decision trees can be trans-

lated to the case of multi-class SVMs. Even though speed is not a concern in

this thesis, the binary tree classifier has an extremely fast classification phase.

If the tree structure is symmetric, it requires only 2� lnK evaluations to classify

unseen examples. This is substantially less than the evaluations needed by the

above methods.

� However, this can also be viewed with pessimistic eyes: The separating hyper-

planes in the top nodes boundary cannot be very detailed as they need to include

all classes. Additionally, as in the DAGSVM classifier, if one binary misclassi-

fication happens during classification, the unseen example will be misclassified.
15Note that this structure does not need to be symmetrical. Depending on the inter-relation amongst

the classes, one can opt to create an asymmetrical and deep tree.

Chapter 2. Support Vector Machines 32

This may make it less stable than the One vs. One classifier.

2.9 Conclusion

It is not obvious which of the multi-class methods are best for extending the generali-

sation powers of the binary SVMs. Since no theoretical metrics are available to assess

their generalisation abilities, it is not possible to make proper comparisons without

evaluating their capabilities on real-world data sets.

When constructing and evaluating a multi-class method, it is easy to forget the

importance of the underlying binary SVMs. This must be not be done given that the

generalisation ability of the multi-class classifier is fully dependent on the generalisa-

tion abilities of the binary SVMs. An analysis of the individual binary SVMs should

be carried out before the extension to the multi-class case is done.

This ends the introduction on Support Vector Machines. There are numerous other

aspects that could be considered, though. For example, describing SVM in the con-

text of the wider family of linear discriminant classifiers could give a better picture

of it’s placement amongst other learning machines16. Furthermore, a more detailed

theoretical analysis of the generalisation bounds of binary SVMs could lead to a better

understanding of their generalisation performance (see [1]).

However, it is hoped that this chapter have covered enough aspects to give an un-

derstanding of the issues involved in working with SVMs and emplying the method on

a practical problem.

16Rrefer to [24] for details.

Chapter 3

Experiments

In this chapter, I will evaluate the performance of SVMs on the problem of frame-by-

frame classification. The problem is not easy. To give an indication of just how difficult

it is, I have plotted the two first dimensions of frames from two target phoneme classes

in the data set. The result is shown on figure 3.1. As can be seen, the plot displays an

extreme amount of overlap. A potential learning machine must somehow attempt to

separate such classes and produce valid predictions.

Figure 3.1: Plot of the first two dimensions from /aa/ and /ae/ vowel speech frames.

In the following sections four groups of experiments will be described. First, anal-

33

Chapter 3. Experiments 34

ysis of models trained on class-pairs is performed to learn how to get the best gen-

eralisation performance out of each individual SVM. Subsequently, three groups of

multi-class experiments will be carried out. These are related in the sense that they

each utilize one of the multi-class classification methods described in section 2.8.

3.0.1 Toolkits used

Throughout the experiments, I used the toolkit SVM-Light ([29]). It implements the

Chunking algorithm described in section 2.7. Even though it is not the fastest toolkit

available, it returns a lot of useful information about the training problem. This in-

cludes estimates of the generalisation error and VC dimensions. For larger prob-

lems, when more than 16000 examples were included, the SVMTorch toolkit was used

([11]). This is faster due to the implementation of the Sequential Minimal Optimisation

algorithm also described in section 2.7.

3.0.2 The TIMIT speech database

The data set used for the task is the TIMIT database1 ([20]). It is a corpus of high-

quality continuous speech from North American speakers, with the entire corpus re-

liably transcribed at the word and surface phonetic levels. The speech is parame-

terised as 12 Mel-frequency coefficients (MFCC) plus energy for 25ms frames, with

a 10 ms frame shift2. The target labels consists of 40 different classes, representing

40 phonemes from the English language. This is a configuration commonly used in

speech recognition ([49]).

The corpus is divided into 3648 training utterances and 1344 test utterances (only

si and sx sentences were used). No speakers from the training set appear in the test

set, making it 100% speaker-independent. To measure performance, a validation set of

1000 utterances was subtracted from the training set. For generating training and test

samples from the three data sets I randomised the order in which the utterances were
1The description of the TIMIT database is based on [32].
2Note that delta and acceleration coefficients can be derived from these 13 coefficients, resulting in

a total of 39 coefficients.

Chapter 3. Experiments 35

chosen3.

In appendix B, an overview of the TIMIT database is shown.

3.1 Binary SVM experiments

Each binary SVM involves a separate optimisation problem. As mentioned before, in

a multi-class problem it is of great importance that each of these generalise as well as

possible. This is the case, no matter if it is a simple linearly separable problem, or

requires a complex decision boundary.

Several user-defined parameters are involved when training an SVM model. These

need to be learned such that the discriminate performance of each SVM is optimal. The

parameters are summarised in table 3.1. Additionally, the parameters of the resulting

models are listed in table 3.2. How these are related to the user-defined parameters will

be examined in this section.

Kernel A kernel function needs to be chosen. The choices include lin-

ear and non-linear kernels, for example the ones described in

section 2.4.4. The kernels often involves one or more kernel

specific parameters to be set. Natutally, these need to be opti-

mised.

Penalty term C This parameter regulates the relation between the minimisa-

tion of �w�2and minimising the classification error (in equation

(2.22)).

Composition of feature vec-

tor

The feature vectors of the input data should naturally contain as

much information about the under-lying problem as possible.

Amount of training data Generally, performance increases when more training data is

included. Unfortunately, as mentioned in section 2.7, the rela-

tion between training time and size of training set is non-linear.

A trade-off between generalisation performance and run-time

must be made.

Table 3.1: Overview of user-defined parameters in a binary SVM

3This was only done once to allow direct comparison between experiments.

Chapter 3. Experiments 36

Number of support vectors

(SVs)

The number of SVs in the resulting model is implicitly chosen

by the user through the parameters listed in table 3.2. How are

these related to the other factors should be investigated?

Training time How the training time of the SVMs relate to the amount of train-

ing data used should be examined.

Classification time Classification time is important if the classifier is to be used in

any system where run-time is critical.

Performance on validation

set

The most important issue of this thesis is to find the best possi-

ble performance. How this can be achieved should naturally be

explored.

Table 3.2: Important factors in an SVM model

3.1.1 Experimental setup

By default, each fature vector contains 13 dimensions as described above. I created

training sets of binary class-pairs, each consisting of data from two of the 40 phoneme

classes with labels “+1” and “-1” as described in section 2.2.1.

3.1.2 Choice of kernel and C

To examine the effect of different kernels, I performed experiments using the three

kernels from section 2.4.4. parameters were varied. The results are shown on figure

3.24. The plots are found by a SVM model separating data from phoneme classes /aa/

and /ae/. Similar behaviour was found in all examined SVMs5.

Looking at the figures it can be concluded that a search for optimal parameters is

needed. This is easily done for the linear kernel, but not as straightforward to do for the

non-linear kernels. The kernel specific parameter is strongly related to the penalty term

C, and hence, it is not possible to search for the parameters individually. Fortunately,

the areas around the peaks are reasonably smooth. This makes it possible for even a

rough search is likely to find near-optimal parameters.
4On figure C, Gamma is used instead of σ as kernel parameter. The relation are: Gamma � 1�2σ2.

The SVM-Light toolkit uses Gamma, and thus this factor will be used instead of σ for the remainder of
the thesis.

5In total, around 20 different class-pairs were examined.

Chapter 3. Experiments 37

Nevertheless, techniques for automatically learning the SVM parameters were in-

vestigated. Several such schemes exist in literature ([31], [34], and [62]). I exam-

ined some of these, but unfortunately, the increase in performance by employing these

methods were marginal (mostly less than 0.1%). Furthermore, the run-time needed far

exceeded the run-time of the exhaustive search.

Figure 3.2: Effect of C and kernel parameter on validation accuracy. Plot (a) show the

resulting performance of the linear kernel when varying C. Plot (b) displays performance

of the polynomial kernel when varying C and degree d . Finally, plot (c) shows perfor-

mance of the Gaussian kernel when varying C and Gamma. Notice how the Gaussian

kernel shows the best performance, although its decision surface is less smooth than

the surface of the other kernels.

3.1.3 Including different amounts of training data

In this experiment, I investigated how the size of the training set affected: a) the train-

ing time, b) the number of support vectors in the model, and c) the classification tine.

Since the training time increases non-linearly with the size of the training set, the

number of training examples must be restricted to reduce run-time. This is particu-

larly important, considering the number of binary SVMs required in the multi-class

classifiers.

Chapter 3. Experiments 38

Figure 3.3: The effect of varying the training set size. Plot (a) shows the increase in

generalisation performance when varying the size of the training set. As expected, the

performance increases when the amount of training data increases. Plot (b) show that

the relation between training set size and training time is near quadratic. Fortunately,

classification time only increases linearly with increase in training set size. Finally, plot

(c) displays the roughly linear increase in number of support vectors when increasing

the amount of training data.

On figure 3.3, three plots shows the effect of varying the amount of training data6.

Based on the above experiments, the following observation can be made:

� The Gaussian kernel seems to offer the best generalisation performance. This

was expected: the linear and polynomial uses a feature space with a fixed number

of dimensions. In contrast, the Gaussian kernel has the potential to map the data

into infinite dimensions, which intuitively gives it greater flexibility. However, it

is not always superior. In a few cases, the polynomial kernel yielded comparable

performance.

� For this problem, near-optimal parameter sets can be found using a rough ex-

haustive search through parameter space due to the smooth maxima of the deci-

sion surfaces. This applies to all kernels examined.
6Similarly to the above experiment, the plots are found by a SVM model separating data from

phoneme classes /aa/ and /ae/ using the Gaussian kernel. Comparable plots were found for all examined
SVMs.

Chapter 3. Experiments 39

� The problems of scaling the SVM to handle large amounts of training data be-

comes apparent when looking at figure 3.3(b). The near-quadratic increase in

training time severely restricts the amount of training data that can be used. In

comparison, Recurrent Neural Networks have a clear advantages over SVMs.

They do not have this as training time simply scales linearly with the size of the

training set.

� By increasing the amount of training data, the number of support vectors is also

increased. This prolongs classification time as the contribution of each individual

support vector needs to be computed in equation (2.33).

All these conclusions will be taken into considerations when the multi-class exper-

iments are performed.

One user-defined parameter has not been discussed above: the composition of the

feature vector. Experiments were carried out using various feature vectors. However,

these will not be described in this section, since the benefits of using the different

feature vectors did not become apparent until they were used in multi-class problems.

3.2 Selecting multi-class methods

In section 2.8, I described four different methods for extending the binary SVM to

handle multi-class data. Due to the computational costs of running the multi-class

experiments, I have chosen not to use the One vs. Rest classifier (described in section

2.8.2). Although this is one of the most commonly used methods, the performance on

speech data seems to be lacking. In preliminary experiments, this method produced

substantially worse results than the remaining classifiers, and is found to be incapable

of properly separating the data. This conclusion is supported by results found in [9]

and [6].

This leaves the One vs. One, DAGSVM, and the Binary Tree classifiers. In the fol-

lowing sections, I will start out describing the One vs. One classification experiments

in details. The remaining classification schemes will be explained much more briefly,

since they can take advantage of the conclusions drawn from the group of One vs. One

experiments.

Chapter 3. Experiments 40

3.3 One vs. One Classifier

3.3.1 Introduction

Recall the description of the One vs. One classifier in section 2.8.1: this classifier

creates one binary SVM for each combination of classes, resulting in K�K � 1��2

SVMs. When an unseen example is classified, all SVMs are evaluated. For each

SVM, a “vote” is given to the “winning” class7. The unseen example is classified as

the class with most votes.

This method is one of the most popular and successful multi-class schemes found

in literature ([4], [3]). In numerous cases, including frame classification, this classifier

has shown superior generalisation performance ([9], [6]).

The task in focus is frame classification. It has 40 possible target labels, where each

target corresponds to a phoneme class. This results in 40 � �40� 1��2 � 780 binary

SVMs. This is a considerable number of SVMs. Each one needs to be constructed

such that it achieves optimal generalisation performance.

3.3.2 Practical issues

As one can easily imagine, training and evaluating 780 binary SVM is a very compre-

hensive task. Even when using small amounts of training data, the training process can

take days. Moreover, all 410920 examples contained in the TIMIT test set8 must be

evaluated on the 780 binary SVMs. This results in over 300 million evaluations, and

would take weeks to complete on “normal” machines (Intel Pentium PCs or Sun Ultra-

5s). For this reason, I have reduced the amount of test examples to 4000 per class9.

This should still be enough to give a reasonably accurate measure of performance. By

means of the frequencies of the individual phonemes in the test set, it is possible to

give a fairly precise estimate of the full test set accuracy.
7As mentioned earlier, a class “wins” the classification if the unseen example has been classified to

lie on the classes’ side of the decision boundary in equation (2.34)
8See Appendix B for an overview of the phonemes in the TIMIT test set
9Not all classes have 4000 examples in the full test set (see Appendix B). Consequently, these class

sets were not reduced.

Chapter 3. Experiments 41

3.3.3 First experiment: Effects of kernels

This experiment is done to get an indication of the performance of the One vs. One

classifier system and, at the same time, compare the generalisation abilities of the

different kernels.

3.3.3.1 Experimental setup

To begin with, I chose to include only 1000 training examples per class, resulting in

2000 training examples per SVM. I used the 13 basic MFCC coefficients described

in section 3.0.2, and varied the kernel and C parameters through a rough exhaustive

search. The created models were tested using 4000 test examples per class.

I had the advantage of having several Sun UNIX machines available (Ultra-5 and

SunFire). To reduce run-time, I split up the big job into numerous sub jobs, and dis-

tributed these to different machines. While the experiment previously would need

weeks to finish, this reduced the experiment’s total run-time to approximately 70 hours.

3.3.3.2 Results and conclusions

The result of the experiments are shown in table 3.310. Looking at the results, the

performance of the kernels seem to confirm the conclusion made in section 3.1.2: the

Gaussian kernel offers superior generalisation due to it’s greater flexibility. However,

the best-found result of 46.0%/50.9% is not impressive considering the extensive run-

time. Moreover, compared with the best results found in literature, they are rather poor

(70.4% in [50] and 74.8% in [5]). The explanation can perhaps be found in the binary
10Note on notation used in table. MBA stands for Mean Binary Accuracy. It is the average of all

accuracies found from evaluating a test or validation set on the 780 binary SVMs. “MBA Val” is the
MBA of the validaton set, and “MBA Test” the MBA on the test set.
MA1 and MA2 denote Multi-class Accuracies. MA1 is found by evaluating the classifier on 4000 test
examples per class. MA2 is found by weighting the results from MA1 with the phoneme frequencies
in the full TIMIT test set. Intuitively, MA2 should offer a good estimate of the performance on the
complete test set.
Top 3/Top 5 are alternative metrics for measuring classifier performance. “Top N” denotes the percent-
age of the test examples where the correct class is among the set of N phonemes with most votes. E.g.
when Top 5 is 65.63%, it means that in 65.63% of the test examples the correct phoneme frames were
amongst the 5 phonemes with most votes.
These terms will be used in the remainder of the thesis.

Chapter 3. Experiments 42

SVM’s performances on the validation and test sets. Notice the difference between

MBA Val and MBA Test. Apparently, the validation set and the test sets are somehow

very different. The reason for this can be found in the composition of the feature

vectors. They contain only the basic 13 MFCC coefficients described in section 3.0.2.

As observed in [43], the 13 coefficients used has a large in-class variance. Thus the

risk of large differences between validation and test sets is high, and leads to poor

performance.

Kernel MBA Val MBA Test MA1 MA2 Top 3 / Top 5

Linear 89.8 82.0 27.3 33.9 54.6/65.6

Polynomial 90.9 83.4 29.4 34.4 56.0/68.1

Gaussian 91.2 85.4 46.0 50.9 62.1/85.2

Table 3.3: Performance of the One vs. One classifier using different kernels. From

the multi-class accuracies reported (MA1 and MA2), it is clear that the Gaussian kernel

outperforms both the linear and polynomial kernels. The best result is 46.0%/50.9%,

and best Top 3/5 is 62.1%/85.2%.

3.3.4 Adding more features

The problem of large variances in the data sets may be alleviated by adding first and

second order derivatives to the 13 existing MFCC coefficients. The can be computed

over several frames to comprise the dynamics of the speech and help discriminating

between fast and slow changing phonemes. The features are commonly used in speech

recognition, and are typically found to improve classification results ([49]).

3.3.4.1 Experimental setup

When adding the new features, the feature vectors contained the 13 existing MFCC

coefficients, 13 first order derivatives and 13 second order derivatives. I chose to run

the experiment using the Gaussian kernel since it had shown the best generalisation

performance. The result is shown in table 3.4, where it is compared with the previous

result.

Chapter 3. Experiments 43

Features MBA Val MBA Test MA1 MA2 Top 3 / Top 5

13 91.2 85.4 46.0 50.9 62.1/85.2

39 95.1 89.7 51.1 53.6 68.7/87.5

Table 3.4: Effect of adding derivatives. The generalisation performance is increased

in both overall and binary accuracies. In particular, notice the substantial increase in

performance in binary accuracy.

3.3.4.2 Results and conclusions

As can be seen from the table, the overall performance is increased by 2.7%. More-

over, notice how the binary accuracies of the validation and test sets have increased

by almost 4%. In other words, the classification error of each individual SVM have

decreased by 46%. This significant improvement confirms that: a) the derivatives con-

tain important information about each frame, and b) even with the increased number

of dimensions, the SVMs are capable of detecting the features that characterises the

data. I.e. it demonstrates the theoretical claim that SVMs counteracts the curse of

dimensionality (from section 2.3.1.2).

Furthermore, since the first and second order derivatives are computed over sev-

eral frames, the improvement indicates that a substantial part of a frame’s information

lies in the context frames. This conclusion was also reached by [18] and in the ex-

tensive examinations of [37] and [25]. Investigations into adding additional context

information seem reasonable.

3.3.5 Adding context frames

How can we include more context information about each frame? The answer lies in

the neighbouring frames. Speech is fairly slowly changing, and each phoneme lasts

on average 65ms [25]. Given that speech frames are extracted every 10ms, this results

in 6.5 frames per phoneme on average. Consequently, contextual information can be

added by including neighbouring frames in the feature vectors.

Chapter 3. Experiments 44

3.3.5.1 Experimental setup

Several ways were explored of adding neighbouring frames, or context frames, to the

feature vector. Each feature vector included the frame to be classified (denoted T as in

target frame) and various context frames Ci on each side:

x � �C�N� � � � �C�1�T�C1� � � � �CM�

where C�i denotes the context frame positioned i frames before the target frame, and

similarly, Ci represent the i th context frame after the target frame.

Each frame used the 39 features per frame described in the previous section, since

they were shown to outperform the basic 13 features. To be able to compare with

earlier results, the Gaussian kernel and 1000 training examples from each class were

used.

Feature vector x �x� MBA Val MBA Test MA1 MA2 Top 3/Top 5

�T� 39 95.1 89.7 51.1 53.2 68.7/87.5

�C
�1�T�C1� 117 95.5 94.8 58.9 60.8 82.4/90.1

�C
�2�C�1�T�C1� 156 95.6 94.9 59.5 62.9 83.1/90.7

�C
�2�C�1�T�C1�C2� 195 95.6 95.0 59.8 63.7 83.3/91.0

�C
�3�C�2�C�1�T�C1� 195 95.3 94.7 58.9 63.1 83.3/90.9

�C
�3�C�2�C�1�T�C1�C2� 234 95.2 94.7 58.8 62.9 83.4/90.7

�C
�3�C�2�C�1�T�C1�C2�C3� 273 95.2 94.6 58.6 62.5 82.7/90.4

Table 3.5: Summary of experiments with different feature vectors. The results show that

including context frames substantially improves performance. The best configuration is

found when two context frames are included on each side of the target frame. This

improves performance by a whole 8.7%/10.5% from previous found results.

3.3.5.2 Results and conclusion

Results from five different feature vector compositions are shown in table 3.5. As

seen on the table, including context frames substantially improves performance. The

explanation for this improvement can be found in the much-improved MBA Test. The

difference between MBA Val and MBA Test has virtually disappeared, which indicates

Chapter 3. Experiments 45

that the in-class variance in the data has decreased. Therefore, it can be concluded that

information “hidden” in the context frames is vital for generalisation performance.

The best result found in literature, 74.2% by [5], may seem substantially better

than the 59.8%/63.7% found in this experiment. However, the result should not be

dismissed so easily. [5] also report a 60.9% frame accuracy using only 10% of the

training data. Since my experiments are based on approximately the same amount of

training data, I believe them to be very promising.

3.3.6 Consistency experiment

So far, the best-found result has been based on a total of 160000 examples from the

TIMIT test set (4000 examples per class). Since this is only a subset of the full test

set, we need to check the solidity of the result, to certify that it can be reproduced on

different test sets.

3.3.6.1 Experimental setup

Three new separate subsets were created from the TIMIT test set, containing 1000

examples per phoneme class11. This is in addition to the test set used in the previous

experiments. The sets were tested on the best models found thus far12.

Test set MBA Val MBA Test Overall accuracy

Base 95.6 95.0 59.8/63.7

1 95.2 94.9 59.4/63.1

2 95.8 95.2 60.1/64.2

3 95.6 95.1 59.8/63.8

Overall 95.5 95.1 59.9/63.8

Table 3.6: Results from consistency experiment.

11As mentioned before, some classes do not have sufficient examples in the full set (Refer to appendix
B for an overview of the TIMIT speech corpus). In these case, the same examples were used in all sub
sets.

12Using 39 features per frame, two context frames on each side of the target frame, and the Gaussian
kernel.

Chapter 3. Experiments 46

3.3.6.2 Results and conclusions

The results from the tests are shown in table 3.6. They show that the variances in both

binary and overall accuracies are marginal, proving that the previous found results are

reliable.

3.3.7 Last experiment: Including additional training data

In the previous experiments, each binary SVM has included only 1000 training exam-

ples per phoneme class, resulting in 2000 training examples per SVM. This has been

done to restrict the run-time of the experiments. However, recall figure 3.3(a). The

figure indicates that the performance of the binary SVMs could improve if additional

training data is added. Consequently, this could lead to better generalisation perfor-

mance.

3.3.7.1 Experimental setup

I ran three experiments with different amounts of training data. The first experiment

contained 4000 training examples per class, and the second one a staggering 16000

examples per class. Since training the SVMs would take a substantial amount of time,

it was not feasible to perform parameter search. Instead, I reused the “best” parameters

found in section 3.3.5. Although this was not the optimal solution, it was required to

reduce run-time. Moreover, the job was split up into numerous sub jobs and run in

parallel.

The final experiment involved evaluating the first 16000-example experiment on

the full TIMIT test set.

3.3.7.2 Results and conclusions

The results from the two experiments are shown in table 3.7, where they are compared

with the previous best result. Two conclusions can be made from looking at the ta-

ble. First of all, the estimated and actual full test set accuracies are comparable. This

confirms the accurateness of the previously computed estimates. Secondly, the 70.6%

Chapter 3. Experiments 47

Examples per class MBA Val MBA Test MA1/MA2 Top 3/Top 5

1000 95.5 95.1 59.9/63.8 83.3/91.0

4000 96.1 95.6 56.7/67.3 84.7/92.5

16000 - 96.1 55.9/70.8 86.3/93.5

16000 (full) - 96.1 70.6 86.1/93.4

Table 3.7: Results of experiments with additional training data. As expected, the 16000-

example experiment shows the best estimated accuracy. This was confirmed by testing

the model on full TIMIT test set. The result of 70.6% accuracy is shown on the last row.

accuracy found on the full test set is better than the second best result found in liter-

ature (70.4% by [50]). This proves that SVMs is a viable and capable technique for

frame classification.

Another important observation can be made. Notice how the unadjusted overall

performance (MA1) decreases when the amount of training data increases. Although

this may come as a surprise, a logical explanation exists:

As mentioned in section 3.0.2, some phonemes are very infrequent and have few

training examples in the training set. Consequently, this results in an uneven distribu-

tion of examples during training. Recall the objective function (equation (2.22)):

�w�2�C
�
∑i ξi

�k

The SVM training algorithm aims to minimise this expression, which partly means

minimising the classification errors (the second term). As described in section 2.3,

each ξi is defined as the distance from a misclassified training example to the decision

boundary. Hence, if one set of training examples is larger than the other, it will also

have the majority of ξis. In effect, to minimise the second term, the hyperplane will be

moved in the direction of the smaller class.

This creates the implicit bias towards larger phoneme classes, and the larger classes

will “win” more classifications. Hence the improved classification performance on the

full test set. However, as a result of this bias, the smaller classes will “lose”13 more

classifications, and the unadjusted classification rate will decrease.
13As opposed to “winning”.

Chapter 3. Experiments 48

3.3.8 Generalisation performance of the One vs. One classifier

To measure the generalisation performance of the One vs. One classifier, consider how

the overall accuracy is related to the binary accuracy of the 780 binary SVMs. It seems

logical that if all 780 binary SVMs have a 100% test accuracy, this will lead to a 100%

overall accuracy.

For this reason, I collected all results from the above experiments, and plotted the

relationship between the two factors. The relationship is displayed on figure 3.4.

The plot can be perceived in two ways. On the hand, the figure shows a rather

depressing fact: Even large improvements in binary accuracies does not lead to a great

improvement in overall accuracy. On the other hand, looking at the estimated trend

line, even a slight increase in binary accuracy should lead to a substantial increase in

overall accuracy.

Figure 3.4: Binary mean accuracy (x axis) vs. overall accuracy (y axis) using the voting

scheme.

Chapter 3. Experiments 49

3.3.9 Conclusion

In the above experiments we have seen that the One vs. One classifier offers great

generalisation ability. The completed experiments were by no means performed under

optimal conditions, and still the classifier performed extremely well. The best-found

result of 70.6% frame classification rate is competitive with the second best result

reported in literature (70.4% in [50]).

Conclusions can not only be made about the One vs. One classifier, but about the

SVM method in general. Average binary accuracies of 96% shows that SVMs are a

capable discriminant classifier that can generalise well.

However, one may be concerned about the extensive number of binary SVMs re-

quired to build the multi-class model. The resulting model has just under 2 million

components14, and classifying an unseen example involves evaluation of all 2 million

components. Even though run-time is not the focus of this thesis, the classifier may

seem overly cumbersome to ever be practical in a real-time speech recognition system.

However, it is easy to improve classification speed. Currently, the classifier evaluates

all 780 binary SVMs before it makes the prediction. If some of the classes could be

dismissed earlier, the number of evaluations could be reduced dramatically. From the

experiments, I observed that phonologically similar phonemes tended to produce sim-

ilar classification results on different binary SVMs. For example, a vowel phoneme

“winning” a binary evaluation against a consonant phoneme indicates that the unseen

phoneme might be a vowel. This can be exploited in classification to prune the number

of evaluations. As a result, evaluating a few chosen SVMs (less than 10) gives a fairly

precise indication of what phonological group an unseen example belongs to. The re-

sulting number of evaluations is suddenly only a fraction of the 2 million evaluations.

A new multi-class classifier which builds on this principle is examined in the next

section.
14Total number of support vectors multiplied by number of features in the feature vectors.

Chapter 3. Experiments 50

3.4 DAGSVM classifier

3.4.0.1 Introduction

Platt’s DAGSVM algorithm [27] was described in section 2.8.3. To briefly recapitulate,

it uses the same training phase as the One vs. One classifier but distinguishes itself in

the classification phase by constructing a rooted binary tree structure with K�K�1��2

internal nodes and k leaves. Each node in the graph contains a binary classifier, and

classification is done, starting at the root node, by moving down the tree following the

left or right branch of a node depending on the outcome of each node’s SVM. The leaf

it reaches indicates the classification of the unseen examples.

In [26] and [27] the DAGSVM algorithm were shown to perform similarly and in

some cases better than the voting scheme. It is hoped that this performance can be

reproduced in this section.

3.4.0.2 Implementation issues

[27] describes an easy way to implement of the algorithm. We can represent the tree

as a list of possible target labels (the phoneme classes). The classification of an unseen

example can then be composed of the following steps:

1. Evaluate the SVM for the two outer-most phoneme classes in the list.

2. The phoneme class which “loses” the classification is removed from the list.

3. Step 1 and 2 are repeated until the list contains only one phoneme class.

4. The unseen example is classified as the one remaining phoneme class.

[27] also discusses the composition of target labels in the list. He observes that

the order in which phoneme classes are put in the list does not have any affect on

performance. However, in this section, I have run experiments with both random and

sorted lists15.
15In the sorted list, the phonemes were sorted by their phonological groupings. I.e. vowels/semi-

vowels, nasal/flaps, stops, and fricatives (see [8] for details).

Chapter 3. Experiments 51

3.4.0.3 Experimental setup

Since the classifier utilises the exact same training phase as the One vs. One classifier,

it could simply reuse the best models from the One vs. One experiments (section

3.3.7). The algorithm was tested on the full TIMIT test set.

Composition of list MBA Test Accuracy

Unsorted 96.1 70.5%

Sorted 96.1 71.4%

Table 3.8: Classification results using the DAGSVM algorithm. The result of 71.4%

improves upon the previous best result. Moreover, notice the accuracy improvement

when sorting the lists.

3.4.1 Results and conclusions

The results can be found in table 3.816. As it can be seen from the table, the DAGSVM

classifier shows comparable generalisation performance to the One vs. One classifier.

This is consistent with results reported in literature on other classification problems

([27] and [26]). Appreciably, as a result of sorting the list the result is slightly better

than the previously best result (from section 2.8.3). This reaffirms the SVM method’s

capability as a phoneme classifier.

3.5 Binary tree classifier

3.5.1 Introduction

The last multi-class scheme to be evaluated in the thesis is the Binary Tree classifier. It

was described in section 2.8.4 and to briefly summarise, it uses a rooted tree structure

with nodes containing binary SVMs. Unlike the DAGSVM algorithm the nodes in the

tree can contain multiple classes. These classes are separated into two subsets and a

model is trained to build a decision boundary between them. In classification, starting
16In the table, “MBA Test” denotes the average accuracy for all evaluated nodes.

Chapter 3. Experiments 52

at the root node, each node’s SVM is evaluated, and depending on this classification, it

moves down the left or right branch of the node. This is repeated until a leaf is reached

- which indicates the classification of the unseen example. A schematic of the structure

can be found on figure 2.7.

Since I have not met any literature covering this method for use in SVMs, I have

not gotten any results to compare with.

3.5.2 Implementation

One important part of the binary tree classifier is the problem growing the tree struc-

ture. Unlike the DAGSVM algorithm, where changing the tree structure only had little

impact on the overall accuracy, it is vital to create a structure that separates the classes

optimally. Hierarchical clustering algorithms can solve this problem. They attempt to

grow structures that maximise the separation between the data points.

In this paper, I have chosen to use an algorithm called AddTree ([14]). It is an im-

plementation of the Additive Similarity Trees algorithm by [51]. To describe it briefly,

it grows several small trees with 4 leaves each and combines these together to create

the complete tree (see [51] and [14] for details).

There were one drawback of employing this algorithm: Even though it is an op-

timised version of the original algorithm by [51], the run-time scales O�n3� with the

amount of training data. Consequently, it was not feasible to grow tree structures based

on more than a tiny subset of the training data (less than 50 examples per class), and

the resulting tree was deemed unsatisfactory. Hence, I used an alternative data set to

grow the structure.

In the One vs. One classifier (section 2.8.1) 780 binary SVMs were built, each

separating two phoneme classes. The performance on a validation set was evaluated

for each of the 780 class-pair. This resulted in 780 values describing the separation

ability amongst the classes. These results were used in this section to grow the tree

structure seen in Appendix C17.
17Looking at the tree structure, notice that the tree has three branches from the root. This was reduced

to two branches, such that the middle branch (containing /ng/,/n/, and /m/ phoneme classes) was placed
as the upmost branch in the left part of tree.

Chapter 3. Experiments 53

3.5.2.1 Experimental setup

A binary SVM model was trained for each of the nodes in the tree. The training data

from the classes contained in a node were clustered into two groups, separating the

classes according to which sub tree they belonged to.

The setup used the same user-defined parameters as in the previous experiments18.

The issue of how much training data to use was more problematic. This had to be re-

stricted depending on the number of classes to separate in each node. E.g. for the root

node, where all 40 classes were included, the number of training examples per class

was restricted to 1000. Still, this lead to 40000 training examples in total. The remain-

ing nodes (with fewer classes) could include more training data per class. Overall, for

each SVM, I kept the number of training examples constant to 40000, and adjusted the

contribution from each class accordingly. Given that a SVM with 40000 training ex-

amples take a long time to train, I opted not to search through parameter space to find

good parameter sets. Instead, I based the choice of parameters on the “best” parameters

found in the previous experiments.

Testing was performed on a subset containing 4000 examples per class.

MBA Test MA1 MA2

91.3 56.6 65.5

Table 3.9: Result from the binary tree experiment. The first column is the average

binary accuracy for all nodes, and the second is the actual accuracy found on the test

set. The last column is the estimate for the accuracy on the full test set.

3.5.2.2 Results and conclusions

The results from the experiment is found in table 3.9. Even though the classifier only

uses 17% of the training data used in the 16000-examples One vs One and DAGSVM

experiments, the result is less than 6% worse than the previous best reported result.

This is impressive considering it only needs 3-10 evaluations to classify a frame.

Looking at the tree structure in Appendix C, it is very interesting to note that the

structure closely resembles phonologically based feature systems found in literature.
18Using the Gaussian kernel and two context frames on each side of the target frame.

Chapter 3. Experiments 54

For examples, the Sound Patterns of English found in [7] uses 13 binary features to

describe each phone. These features are based on the way the phoneme sounds are

produced, such as nasal (for using the nasal cavity), continuant (for continuing sounds

as opposed to fricatives), round (describing the rounding of the lips), etc. Looking at

the upper parts of the tree structure, the phonemes are grouped by the binary features

nasals (middle branch), voiced (right branch), and consonantal (left branch). More-

over, further down the tree the phonological based separations are still noticeable.

E.g. it splits the branch containing consonantal phonemes into voiced and unvoiced

phonemes.

These similarities between the data-grown tree structure and phonologically based

groupings demonstrate two points: Firstly, the structure seems reasonable since phonemes

which have similar “voicing” are found in same parts of the tree. Secondly, the group-

ings found in literature translate well into groupings derived from the data-driven

method.

3.6 Conclusion

The above experiments have proven that SVMs are a capable and well-performing

learning machine for frame classification. The best result found, 71.4% by using

DAGSVM in section 3.4, is competitive with the best results reported in literature.

Although it does not surpass the best result in literature of 74.2% reported in [5], it is

slightly better than the 70.4% reported in [50]. This is noteworthy given that the latter

has been in development for years.

As mentioned earlier, the experiments in this chapter were by no means performed

under optimal conditions. The three major difficulties during the experiments included:

a) the number of binary SVMs included in the models, b) training-time, and c) the bias

in the binary SVMs.

The amount of binary SVMs needed in training made the experimental process

very extensive. Combined with the long time required to train each SVM, the run-time

of each experiment seriously affected the progress rate19.
19Many experiments had to be delayed because their parameter choices were to be based on experi-

Chapter 3. Experiments 55

To solve the restrictions on training set size, some variants of the SVM algorithm

found in literature was examined ([17] and [57]). These were designed to alleviate the

problem, and claimed to function with extreme amounts of training data. However,

these were found to return inferior results20.

Regarding the bias, it was observed that the built-in implicit bias in the large-scale

binary classifiers increased overall accuracy. However, there was not control over the

inter-dependencies amongst the models. Recall from section 2.6 that it is possible to

explicitly incorporate a bias into the SVMs. By adjusting the biases, a more structured

method could be introduced to directly optimise the overall generalisation performance

of the multi-class classifiers.

ments still in progress.
20The solutions simply restricted the size of working set (i.e. number of support vectors) and this

resulted in poor solutions.

Chapter 4

Probability outputs

Almost all speech recognition systems are based on statistical models ([30]). If the

proposed multi-class system should be used in a complete speech recognition system,

a probabilistic interpretation of the classification results is needed. Recurrent Neural

Networks (RNNs) have a clear advantage over SVMs since the output of RNNs can be

interpreted as posterior probabilities ([2]). SVMs, on the other hand, have no clear way

of interpreting outputs as probabilities. Via equation (2.33), they return the classified

instance’s distance to the decision boundary. From conclusions found in [18] and [47]

there is no clear relationship between this distance and the posterior class probabilities.

If we can find such a relationship, it will be possible to generate N-best lists1 of the

class predictions.

4.1 Estimating posterior probabilities

One scheme for producing posterior probabilities from the One vs. One multi-class

SVM classifier is very simple: the number of votes accumulated by each class roughly

correspond to a confidence measure in the class. Classes with a lot of votes have won

a lot of binary classifications, and thus seem logically more likely to be correct. A

very rough estimate of posterior probability could be obtained by scaling down the

number by 1�780 such that the sum of votes are 1. These values could be interpreted
1See [49].

56

Chapter 4. Probability outputs 57

as probability estimates.

However, this scheme is unlikely to work very well, and even if it did, would only

work for the One vs. One classifier. To obtain a more accurate estimate the individual

SVMs must be considered.

One approach is to fit a Gaussian to the class conditional probabilities P� f �y � 1�

and P� f �y ��1� . The resulting posterior probability P�y � 1 � f � will then be a sig-

moid [60]. Unfortunately, the Gaussian assumption needed to use the class-conditional

probabilities are typically not satisfied in SVMs because of the asymmetric distribu-

tions of the output distances (see figure 4.1). [47] proposes to fit the posterior proba-

bilities directly onto the SVM. Since the posterior probability is a sigmoid, a sigmoid

function can be fit to the SVM outputs. The posterior probabilities can then be esti-

mated by:

P�y � 1� f � �
1

1� eA f�B (4.1)

The sigmoid is fit to the model by estimating the two parameters A and B . This

can be done by maximum likelihood estimation. [47] discusses a potential problem

of fitting both sigmoid and SVM parameters from the same data set. In non-linear

models, the support vectors typically correspond to a large subset of all training data in

non-linear models, and because the support vectors defined the decision boundary, the

resulting sigmoid will be biased towards the decision boundary (i.e. the sigmoid will

be “steeper” than it should be). One of the possible solutions proposed in [47] is to use

a separate validation set. This is easy in this case, since I already use a validation set

to learn the SVM parameters.

Figure 4.1 is taken from [47], and does not prove the usability of this method on

speech data. I have done this in figure 4.2, where a validation set has been used to

train the sigmoid parameters of SVM model /aa/ vs. /ae/. The figure shows the actual

posterior probabilities of the test set. As it can be seen, the sigmoid offers a fairly

good estimate of the probability. This result is consistent with results reported on other

speech data sets ([18]).

Chapter 4. Probability outputs 58

Figure 4.1: Histogram of posterior probabilities for a model trained using a linear kernel

(from [47]). Note the non-Gaussian distributions.

Figure 4.2: A sigmoid fit to the distance-based posterior probability estimates (/aa/ vs.

/ae/).

4.2 Conclusion

The extension of making the SVM produce posterior probability estimates is important

and necessary if the method is to be used in connection with a full speech recognition

Chapter 4. Probability outputs 59

system. The method described in the chapter maps the distance-outputs produced by

SVM classifications to posterior probabilities by means of a sigmoid function that

has been fit to the data. This was shown to result in fairly accurate estimates, and thus

makes it possible to use SVMs as one of the basic units in a speech recognition system.

Chapter 5

Conclusion and future work

The goal of this thesis was to examine the feasibility of applying Support Vector Ma-

chines to the problem of frame classification. This was done, and the SVM method

was found to create a capable learning machine with good generalisation ability. Even

with the tremendous amount of overlap amongst classes, it could successfully model

the speech data and produce liable classifications. Moreover, through maximising the

margin of separability between classes and thereby implementing the Structural Risk

Minimisation principle, it demonstrated that it could counter act the curse of dimen-

sionality and generalise well even when the data contained numerous irrelevant fea-

tures.

In chapter 3 I described three different schemes for extending the inherently binary

SVM to the multi-class domain. The results show that the schemes can effectively re-

tain the generalisation abilities of the binary SVM. The best reported result of 71.4%

are competitive with the best results found in literature, even under sub-optimal con-

ditions. The experiments showed that employing the Gaussian kernel lead to better

generalisation performance than by using the linear or polynomial kernels. The reason

was believed to be the kernel’s potential to map the data in input-space into an infinite

dimensional space. Furthermore, the attempts to include additional information in the

feature vectors revealed a substantial amount of information about each frame to be

hidden in the neighbouring frames. Lastly, it was made clear that the a key to better

generalisation performance is the amount of training data used.

In chapter 4 a method was described for retrieving posterior probability estimates

60

Chapter 5. Conclusion and future work 61

from the distance-based outputs of the SVMs. The estimates were shown to be fairly

accurate estimates of the actual posterior probabilities. The extension enables SVM

classifiers to be used as discriminative front-end classifiers in a full speech recognition

system.

However, all hurdles in making SVMs a viable options in real-time speech recog-

nisers were not solved. Even though the focus of the thesis was not to think in terms

of speed and applicability to real-time speech recognition systems, it must not be for-

gotten. The best reported result was found by the DAGSVM classifier. This classifier

needed to evaluate 39 binary SVMs before it returned a prediction. This required far

more time than what is allowed in a real-time system. Fortunately, several ways to

reduce classification time exist.

1. Reducing the amount of binary SVMs to evaluate. Even though the DAGSVM

algorithm drastically reduced the number of binary SVMs to evaluate compared

with the One vs. One classifier, it still had great redundancy in classification

since all 40 phoneme classes were considered. A pruning technique could re-

duce this number by exploiting the phonological groupings of the phonemes1.

The binary tree classifier described made use of such groupings. It reduced the

number of evaluations to 3-10. However, the performance of this classifier was

not competitive since it was forced to limit the amount of training data in the top

nodes of the tree.

2. Data-cleaning. As described in section 2.4.2, the solution of the SVM training

algorithm is typically sparse. However, if the data sets have a large amount of

overlap as is common among the speech data, the solution will be less sparse.

In other words, the resulting model will contain a large amount of support vec-

tors, and consequently classification time will be high. In most cases, this is

quite unnecessary. [18] and [29] observed that a sparse solution with similar

generalisation performance could be found by throwing away all support vec-

tors not lying on the decision boundary. Moreover, they note that even in sparse

solutions this technique lead to drastic reductions in support vectors, and hence

classification time.
1For example, separating vowel and consonant phonemes.

Chapter 5. Conclusion and future work 62

An mentioned above, a key to better generalisation performance is to solve the

problem of how training time scales with the traning set size. However, a solution is

not straightforward. Not only should it be able to promptly handle large amounts of

training data, but it also needs to consider memory requirements and naturally, produce

optimal solutions. Such a method must be discovered to unlock the full potential of

SVMs in speech recognition.

Appendix A

Kernel Requirements

The following theorems are taken from [4].

A.1 Symmetry Condition

Let K�x�y� be a real symmetric function on a finite input space, then it is a kernel

function if and only if the matrix K with components K�xi�x j� is positive semi-definite.

A.2 Mercer’s Theorem

This theorem must be satisfied by a functional for a pair Φ, H to exist.

For a compact subset, C � ℜ N , we have:

If K�x�y� is a continuous symmetric kernel of a positive integral operator T, i.e.

�T f ��y� �
�

C

K �x�y� f �x�dx (A.1)

with:

� �

C�C

K �x�y� f �x� f �y�dxdy
 0 (A.2)

For all f � C�C then it can be expanded in a uniformly convergent series in the

eigenfunctions Φ jand positive eigenvalues λ j of T, thus:

63

Appendix A. Kernel Requirements 64

K�x�y� �
N

∑
j�1

λ jΦ j�x�Φ j�y� (A.3)

where Ne is the number of positive eigenvalues.

This theorem holds for general compact spaces, and generalises the requirements

to infinite feature spaces. Equation (A.2) generalises the semi-positivity condition

for finite spaces given in the theorem in section A.1. The expansion in (A.3) is a

generalisation of the usual concept of an inner product in Reproducing Hilbert Spaces

with each dimension rescaled by
�

λ j.

Note that for specific cases, it may not be easy to check whether Mercer’s condition

is satisfied. Equation (A.3) must hold for every function f with finite L2-norm (i.e.

which satisfies (A.3)).

Appendix B

Phonemes in the TIMIT speech

database

On table B.1, an overview of the TIMIT speech corpus can be found.

65

Appendix B. Phonemes in the TIMIT speech database 66

Phoneme
Training set

Test set FrequencyTotal Training Validation
/aa/ 27339 16649 10690 10698 0.026

/ae/ 30843 18697 12146 10470 0.025

/ah/ 37788 22654 15134 14652 0.036

/ao/ 22703 13974 8729 9255 0.023

/aw/ 11636 7303 4333 3751 0.009

/ay/ 29526 17763 11763 10975 0.027

/b/ 15665 9357 6308 6691 0.016

/ch/ 6972 4131 2841 2244 0.005

/d/ 25462 15780 9682 8519 0.021

/dh/ 13729 8332 5397 5160 0.013

/eh/ 30173 17853 12320 11264 0.027

/er/ 38674 24152 14522 16335 0.040

/ey/ 28480 17406 11074 10611 0.026

/f/ 22509 13737 8772 9408 0.023

/g/ 10183 6250 3933 3985 0.010

/hh/ 11038 6913 4125 3831 0.009

/ih/ 70017 42160 27857 24259 0.059

/iy/ 43533 26278 17255 16736 0.041

/jh/ 6133 3727 2406 1877 0.005

/k/ 43997 26840 17157 14386 0.035

/l/ 35245 21292 13953 14673 0.035

/m/ 22996 13750 9246 9092 0.022

/n/ 40590 24294 16296 14339 0.035

/ng/ 7344 4390 2954 2461 0.006

/ow/ 20958 12910 8048 7858 0.019

/oy/ 4981 3066 1915 2241 0.005

/p/ 29482 17595 11887 10921 0.027

/r/ 25998 15769 10229 10805 0.026

/s/ 68871 41672 27199 24874 0.061

/sh/ 15285 9410 5875 5583 0.014

/sil/ 172030 104019 68011 63214 0.154

/t/ 48625 29846 18779 16829 0.041

/th/ 6725 3919 2806 2258 0.005

/uh/ 3771 2226 1545 1655 0.004

/uw/ 19345 11648 7697 5561 0.014

/v/ 11953 7419 4534 4229 0.010

/w/ 13263 7979 5284 5825 0.014

/y/ 5347 3274 2073 2118 0.005

/z/ 30567 18591 11976 10641 0.026

/zh/ 1204 697 507 636 0.002

Total 1110980 673722 437258 410920 1.000

Table B.1: Overview of phonemes in the TIMIT database. A subset of the full training

set is used as a separate validation set. The last column shows the frequencies of the

test set. Note that /sil/ represents silence.

Appendix C

Binary Tree Structure

On figure C.1, the binary tree structure grown by AddTree can be seen.

67

Appendix C. Binary Tree Structure 68

Figure C.1: Tree structure grown using AddTree algorithm.

Bibliography

[1] P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector
machines and other pattern classifiers. In Advances in Kernel Methods — Support
Vector Learning, pages 43–54. MIT Press, 1999.

[2] J. Bridle. Probabilistic Interpretation of Feedforward Classification Network
Outputs, with Relationship to Statistical Pattern Recognition. Springer-Verlag,
1989.

[3] C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.
Knowledge Discovery and Data Mining, 2(2), 1998.

[4] C. Campbell. An introduction to kernel methods. In R. Howlett and L. Jain,
editors, Radial Basis Function Networks: Design and Applications, page 31.
Springer Verlag, Berlin, 2000.

[5] R. Chen and L. Jamieson. Experiments on the implementation of recurrent neu-
ral networks for speech phone recognition, purdue university, west lafayette, us,
1998.

[6] K. K. Chin. Support vector machines applied to speech pattern classification.
Master’s thesis, Engineering Department, Cambridge University, 1999.

[7] N. Chomsky and M. Halle. The Sound Patterns of English. MIT Press, Cam-
bridge, MA, USA, 1968.

[8] R. Chun. A hierarchical feature represenation for phonetic classification. Mas-
ter’s thesis, MIT, Cambridge, 1996.

[9] P. Clarkson and P. Moreno. On the use of support vector machines for phonetic
classification. In Acoustics, Speech and Signal Processing, volume II, pages 585–
588, 2000.

[10] R. Cole. Alphadigit corpus, 1997.

[11] R. Collobert and S. Bengio. Support vector machines for large-scale regression
problems. IDIAP, 2000.

69

Bibliography 70

[12] R. Collobert and S. Bengio. Support vector machines for large-scale regression
problems. Machine Learning Research, 1:143–160, 2001.

[13] R. Cooley. Classification of news stories using support vector machines. In
Proc. 16th International Joint Conference on Artificial Intelligence Text Mining
Workshop, 1999.

[14] J. Corter. Addtree/p: A pascal program for fitting additive trees based on sattath
and tversky’s addtree algorithm. In Behavior Research Methods and Instrumen-
tation, 14(3), pages 353–354, 1982.

[15] T. Evgeniou, L. Perez-Breva, M. Pontil, and T. Poggio. Bounds on the general-
ization performance of kernel machines ensembles. In International Conference
on Machine Learning, 2000.

[16] J. Friedman. Another approach to polychotomous classification. Technical report,
Stanford University, UA, 1996.

[17] G. Fung and O. Mangasarian. Proximal support vector machine classifiers. In
F. P. D. Lee and R. Srikant, editors, KDD2001: Knowledge Discovery and Data
Mining, pages 64–70, New York, 2000.

[18] A. Ganapathiraju. Support Vector Machines for Speech Recognition. PhD thesis,
Mississippi State University, US, 2001.

[19] A. Ganapathiraju and J. Picone. Hybrid svm/hmm architectures for speech recog-
nition. In Neural Information Processing Systems, 2000.

[20] J. Garafolo. Getting started with the darpa timit cd-rom: An acoustic phonetic
speech database, 1988.

[21] Y. Guermeur. Combining discriminant models with new multi-class svms. Tech-
nical report, LORIA INRIA-Lorraine, Vandaeuvre-les-Nancy cedex, France,
2000.

[22] S. Gunn. Support vector machines for classification and regression. Technical
report, University of Southampton Image Speech and Intelligent Systsmes Group,
1997.

[23] I. Guyon, B. Boser, and V. Vapnik. Automatic capacity tuning of very large VC-
dimension classifiers. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors,
Advances in Neural Information Processing Systems, volume 5, pages 147–155.
Morgan Kaufmann, San Mateo, CA, 1993.

[24] I. Guyon and D. Stork. Linear discriminant and support vector classifiers. In
Advances in Large Margin Classifiers, pages 147–169. MIT Press, 2000.

Bibliography 71

[25] S. v. V. H. Yang and H. Hermansky. Relevancy of time-frequency features for
phonetic classification measured by mutual information. In ICASSP 99, 1999.

[26] C. Hsu and C. Lin. A comparison on methods for multi-class support vector
machines. Technical report, National Taiwan University, Taiwan, 2001.

[27] N. C. J. Platt and J. Shawe-Taylor. Large magin dags for multiclass classification.
Technical report, Microsoft Research, Redmond, US, 1999.

[28] T. Joachims. Text categorization with support vector machines: learning with
many relevant features. In Proc. 10th European Conference on Machine Learning
ECML-98, pages 137–142, 1998.

[29] T. Joachims. Making large–scale SVM learning practical. In B. Schölkopf,
C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods — Support
Vector Learning, pages 169–184, Cambridge, MA, 1999. MIT Press.

[30] D. Jurafsky and J. H. Martin. Speech and Laguage Processing. Prentice-Hall,
2000.

[31] S. Keerthi. Efficient tuning of svm hyperparameters using radius margin bounds
and iterative algorithms, 2001.

[32] S. King and P. Taylor. Detection of phonological features in continious speech
using neural networks. In Computer Speech and Laguage, pages 333–353, 2000.

[33] B. Leclerc. Consensus of classifications: the case of trees. In IFCS-98. Springer-
Verlag, 1998.

[34] Y. Lin, G. Wahba, H. Zhang, and Y. Lee. Statistical properties and adaptive tuning
of support vector machines. Department of statistics technical report, University
of Wisconsin-Madison, 2000.

[35] E. M. B. M. A. Aizermann and L. I. Rozoner. Theoretical foundations of the
potential function method in pattern recognition learning. In Automation and
Remote Control 25, pages 821–837, 1964.

[36] C. Ma and M. A. Randolph. A support vector machine-based rejection technique
for speech recognition. In ICSLP, Beijing, China, 2000.

[37] M. Malayath. Data-driven methods for extracting features from speech. Technical
report, Indian Institure of Technology, Madras, India, 2000.

[38] J. Marques and P. J. Moreno. A study of musical instrument classification using
gaussian mixture models and support vector machines. Technical report, Cam-
bridge, US, 1999.

Bibliography 72

[39] E. Mayoraz and E. Alpaydin. Support vector machines for multiclass classifica-
tion. In International Workshop on Artificial Neural Networks (IWANN99), 1999.

[40] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[41] P. Moreno and R. Rifkin. Using the fisher kernel method for web audio classifi-
cation. In ICASSP, Istanbul, Turkey, 2000.

[42] K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik.
Predicting time series with support vector machines. In B. Schölkopf, C. J. C.
Burges, and A. J. Smola, editors, Advances in Kernel Methods — Support Vector
Learning, pages 243–254. MIT Press, 1999.

[43] M. G. N. Smith and M. Niranjan. Data-dependent kernels in svm classification
of speech patterns. Technical report, Cambridge University, UK, 2001.

[44] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support
vector machines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors,
Neural Networks for Signal Processing VII — Proceedings of the 1997 IEEE
Workshop, pages 276 – 285, New York, 1997. IEEE.

[45] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An appli-
cation to face detection. In Proceedings of CVPR’97, Puerto Rico, 1997.

[46] J. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in
Kernel Methods — Support Vector Learning, pages 185–208, Cambridge, MA,
1999. MIT Press.

[47] J. Platt. Probabilities for SV machines. In A. Smola, P. Bartlett, B. Schölkopf,
and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61–74,
Cambridge, MA, 2000. MIT Press.

[48] J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[49] L. R. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Prentice
Hall, Englewood Cliffs, New Jersey, USA, 1993.

[50] T. Robinson. An application of recurrent nets to phone probability estimation. In
IEEE Transactions on Neural Networks, vol. 5, no. 2, pages 298–305, 1994.

[51] S. Sattath and A. Tversky. Additive similarity trees. In Psychometrika 42, pages
319–345, 1977.

[52] M. Schmidt and H. Gish. Speaker identification via support vector classifiers. In
ICASSP, volume 1, 1996.

Bibliography 73

[53] B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997.
To order click here or here.

[54] B. Schölkopf, C. Burges, and A. Smola. Introduction to support vector learning.
In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods
– Support Vector Learning, pages 1–22. MIT Press, 1998.

[55] B. Schölkopf, C. Burges, and V. Vapnik. Extracting support data for a given task.
In U. M. Fayyad and R. Uthurusamy, editors, Proceedings, First International
Conference on Knowledge Discovery & Data Mining, Menlo Park, 1995. AAAI
Press.

[56] A. J. Smola. Regression estimation with support vector learning machines. Mas-
ter’s thesis, Technische Universität München, 1996.

[57] J. A. K. Suykens and J. Vandewalle. Multiclass least squares support vector
machines. In IJCNN’99 International Joint Conference on Neural Networks,
Washington, DC, 1999.

[58] D. Tax and R. Duin. Data domain description by support vector. In ESANN99,
pages 251–256, 1999.

[59] R. Vanderbei. Loqo: An interior point cpde for quadratic programming. Techni-
cal report, Priceton University, US, 1994.

[60] V. Vapnik. The Nature of Statistical Learning Theory. Springer, N.Y., 1995.

[61] V. Vapnik and O. Chapelle. Bounds on error expectation for SVM. In A. Smola,
P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 261–280, Cambridge, MA, 2000. MIT Press.

[62] G. Wahba, Y. Lin, and H. Zhang. Gacv for support vector machines. In A. Smola,
P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 297–311, Cambridge, MA, 2000. MIT Press.

[63] C. Williams. Support vector machines (course notes),university of edinburgh, uk,
2000.

