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ABSTRACT 
This paper describes the development of a word-level confidence 
metric suitable for use in a dialog system. Two aspects of the 
problems are investigated: the identification of useful features and 
the selection of an effective classifier. We find that two parse-
level features, Parsing-Mode and Slot-Backoff-Mode, provide 
notation accuracy comparable to that observed for decoder-level 
features. However, both decoder-level and parse-level features 
independently contribute to confidence notation accuracy. In 
comparing different classification techniques, we found that 
Support Vector Machines (SVMs) appear to provide the best 
accuracy. Overall we achieve 39.7% reduction in annotation 
uncertainty for a binary confidence decision, in a travel-planning 
domain.  

1. INTRODUCTION 
Accurate confidence notation is a key capability for dialog 
systems, since acting upon a misunderstood input may incur a 
high cost to the user (either though an undesired side-effect or 
through time wasted on correction). Current confidence notation 
approaches lack the desired level of accuracy. We approach the 
problem by increasing the variety of information sources used for 
notation and by improving classification accuracy. 

Chase [1] proposed the following framework for incorporating a 
confidence metric into a recognition system: (1) At what level 
should the confidence annotation be made; (2) What is the right 
way to define what is an error and what isn’t; (3) What features 
are useful and how useful; (4) How to build a model combining 
the various features to create a confidence annotation. (5) How to 
measure the goodness of the feature and model. 

The answers to these questions depend on the particular 
application that incorporates the confidence annotator. For the 
CMU Communicator system [2], a telephone based dialog system 
that supports planning in travel domain, both the utterance level 
and word level confidence annotation are used. The former 
measures the confidence of the whole utterance, and the latter 
supplies the reliability description of each single word. In this 
paper we focus on word-level confidence annotation and more 
specifically on a binary tagging of word hypotheses, as correct or 
incorrect, according to whether the system believes it is a correct 
decoding result or not.  

The key problem in confidence notation is the selection of 
effective features [1][3][4][5][6] and a variety of features have 
been proposed. These features can be assigned to one of four 
categories depending on the information source: acoustic, 
language model, N-best list or word lattice and other. All are 

based on information from the decoder and moreover have the 
disadvantage that they unavoidably overlap in the information that 
they use, as is apparent in the common observation that the 
performance achieved by all the features together isn’t much 
better than that with only the best feature. Secondly, these features 
are for the most part redundant with the information used to 
generate hypotheses in the first place and so contribute little new 
information, particularly at the acoustic level.  

Given the limitations of purely decoder-based features, other 
information source can be considered. Syntactic constraints and 
grammar rules have proved to be helpful for selecting the best 
hypothesis from an N-best list [7][8]. It’s reasonable to apply this 
knowledge to the word-level confidence annotation because we 
know that the correct recognition result tends to be grammatical 
while an incorrect hypothesis is often (but not always) 
ungrammatical. For large-vocabulary speech transcription, the 
absence of a covering grammar limits the use of this knowledge 
source. For limited domains (as typically is the case for a dialog 
system) a high-coverage grammar is available, since parsing is a 
necessary processing step. In this paper, we describe two parser-
level features, Parsing-Mode and Slot-Backoff-Mode. 

Confidence annotation can be treated as a problem in pattern 
classification and a large variety of classification approaches can 
be considered for our problem. A recent technique, Support 
Vector Machine [9][10], has been shown to achieve better 
performance for long-standing problems than the traditional 
approaches such as Neural Networks and Decision Tree. We 
assess the suitability of SVMs for the confidence notation 
problem. 

The data set used in our experiments was taken from the speech 
and log files produced by the CMU Communicator system (see 
e.g. [2]). A total of 1781 utterances were used, from a contiguous 
time period in the fall of 1999. The first 1000 utterance were used 
as the training set and the remaining as the test set. All 
experiments were performed using the Sphinx-2 [11] decoder. 

2. FEATURES 
In this section, we describe the decoder-based features and 
introduce two parse-level features. 

2.1 Decoder-based Features 

We investigated nine decoder-based features, in four categories. 
Most of these have been previously described in the literature and 
appeared to be promising. All were reimplemented for the purpose 
of this study. 



Acoustic Features 

1. PercPhAll-Frame [1]: The percentage of frames in the 
hypothesized word which base phones match the base phones 
in the phone-only decoding. 

2. PercPhAll-Phone [1]: Similar to the previous feature except 
the percentage is computed for phones rather than frames. 

3. Normalized-Acoustic-Score[1]: The ratio between the 
acoustic scores from the normal decoding and phone-only 
decoding. 

Language Model Features 

4. LM-Backoff-Mode[xx]: The back-off mode of the trigram 
language model.. This feature is computed over a four-word 
contextual window that includes the current word, as well as 
one preceding word and two succeeding words. For each 
word in the window we note whether the 1, 2 or 3-gram 
value was used to compute the language model score. For 
each such pattern in the training set we compute the error 
probability of the center word and threshold this value for the 
confidence decision. 

Word Lattice Features 

5. Lattice-PWP-Acoustic [6]: The log posterior word probability 
computed from the word lattice by summing and normalizing 
the scores of paths passing through the hypothesized word. It 
is computed using only the acoustic score. 

6. Lattice-PWP-LM [6]: The log posterior word probability 
computed from the word lattice but using only the language 
model score. 

7. Lattice-PWP [6]: Lattice-PWP-Acoustic + Lattice-PWP-LM. 

N-Best List Features 

8. N-Best-Homogeneity [1]: The ratio between the score of the 
paths containing the hypothesized word to the total path 
score of N-Best list. 

9. N-Best-Word-Rate [1]: The ratio between the number of the 
paths containing the hypothesized word to the total number 
of paths in the N-Best list. 

We use the Annotation Error Rate to measure the performance of 
each feature: 
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The annotation error rate is often compared with the revised Word 
Error Rate, which is different to its namesake for speech 
recognition: 
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Working only on the hypotheses, the confidence annotator is 
unable to tell whether something is missing or not. So the revised 

word error rate doesn’t consider the deletion errors and change the 
denominator to the number of words in hypotheses rather than that 
in references. If no confidence annotation is made to the decoding 
result, namely, we simply label every word hypothesis as correct, 
the annotation error rate would be equal to the revised word error 
rate. The revised word error rate of the test set is 30.2%. 

Feature parameters, except LM-Backoff-Mode, using a standard 
maximum likelihood procedure, minimizing the number of 
mislabels in the training set. For LM-Backoff-Mode, all of its 
possible combination modes are labeled according to the 
distribution of correct and incorrect hypotheses belonging to that 
mode and classification is done by table lookup. Table 2.1 shows 
the annotation error rate and the corresponding false alarm and 
missing rate of each feature (the false alarm rate and missing rate 
are normalized by the total number of words in hypotheses).  

 

Feature Annot.
Error 

False 
Alarm 

Missing 

PercPhAll-Frame 30.2% 0% 30.2% 

PercPhAll-Phone 30.2% 0% 30.2% 

Normalized-Acoustic-Score 29.4% 2.6% 26.8% 

LM-Backoff-Mode 26.1% 5.7% 20.4% 

Lattice-PWP-Acoustic 30.2% 0% 30.2% 

Lattice-PWP-LM 24.3% 6.5% 17.8% 

Lattice-PWP 20.8% 6.0% 14.8% 

N-Best-Homogeneity 26.8% 2.3% 24.5% 

N-Best-Word-Rate 30.2% 0% 30.2% 

Table 2.1 Performance of decoder-based single features 

The result in Table 2.1 suggest that the language model features 
outperform acoustic features. One source of evidence comes from 
the comparison between LM-Backoff-Mode and Normalized-
Acoustic-Score, and the comparison between Lattice-PWP-LM 
and Lattice-PWP-Acoustic. Obviously the former performs much 
better than the latter. More evidence is obtained from the analysis 
of Lattice-PWP, the best feature in Table 2.1. In computing this 
feature, the weight for language model is increased to six times 
the value used in normal decoding. Therefore a reasonable 
conclusion is that the success of Lattice-PWP should be mainly 
due to the language model score.  

2.2 Parser-based Features 

Good performance for language model features suggests the 
importance of linguistic, syntactic and semantic knowledge. 
Besides the language model, features of the parse of the decoding 
hypothesis suggest themselves as a new information source. Given 
the assumption that the speaker is cooperative, the correct 
recognition results would be more grammatical than the incorrect 
recognition result. Analysis of our data set shows that the ratio 
between parsed and unparsed words for the class of correct 
recognition result is 16:1 while the ratio is reduced to 1.8:1 for the 
class of incorrect recognition result.  



For a large-vocabulary speech recognition system, the absence of 
accurate parsing makes the incorporation of syntactic knowledge 
impossible. However, it isn’t a problem for dialog system in 
which the parsing is a necessary stage. Our Communicator system 
uses the Phoenix semantic parser [12]. Its outcome isn’t a 
complete parsing tree but a sequence of slots that bracket the 
concepts extracted from the utterance. This approach typically 
produces a robust parse of the input and is therefore suitable as a 
source of information about word-level confidence. We therefore 
considered  two additional features based on the parse result. 

10. Parsing-Mode: This feature indicates if a word is parsed by 
the grammar (i.e., bracketed as part of a slot). For a parsed 
word, it further indicates the position of the word within the 
slot, either edge or middle. 

11. Slot-Backoff-Mode: Using a bigram language model for the 
slots, each parsed word is assigned the back-off mode of the 
slot that it belongs to. This feature is computed on a two-
word window that contains both the current word and the 
next word (see LM-Backoff-Mode, above). 

The simplicity of these features may lead one to doubt their 
effectiveness. However our experiments shows they are useful 
features for confidence annotation. Table 2.2 gives their 
annotation error rates on the test set. Compared with the features 
displayed in Table 2.1, the performance of parse-level features 
exceeds all but Lattice-PWP. Their individual performance is 
encouraging. The question of whether they can they work with 
other features is addressed in the next section.  

 

Features Annot.
Error  

False 
Alarm 

Missing 

Parsing-Mode 23.8% 6.5% 17.3% 

Slot-Backoff-Mode 23.6% 6.3% 17.3% 

Table 2.2 Parse-level single-feature performance 

3. CLASSIFIERS 
In this section, we describe our experimental results for SVM as 
well as two traditional classifiers, Decision Tree and Neural 
Networks. The experiments were conducted on the same data set 
used in the previous experiments for decoder-level features. We 
use the same annotation error rate as the metric. 

3.1 Experiments using Decision Trees and Neural Nets 

We first describe classification accuracy using two well-known 
approaches, Decision Trees and Neural Nets. For thhe decision 
Tree classifier we further investigated the impact of the choice of 
objective function on accuracy. We compared two criteria for 
choose the next feature when building the Decision Tree: Decision 
Tree (1) uses a standard information gain criterion and Decision 
Tree (2) uses the word error rate. We used a single BP Network, 
with one hidden layer containing 50 nodes. 

Table 3.1 presents the performance of the Decision Tree and 
Neural Network classifiers using only decoder-level features. 
Recalling the error rate achieved by the best feature, Lattice-PWP, 
which is 20.8%, there is only a small improvement gained by 
adding other decoder-based features (and no improvement for 

Decision Tree (1) at all). The reason for this phenomenon has 
been mentioned before. All of these features come from the 
decoder and they overlap each other on the information that they 
contain. The feature Lattice-PWP has information from both 
acoustic model and language model while other features only 
represent one aspect. So the importance of other decoder based 
features is weakened. 

 

Without Parser-based Features Classifier 

Annot. Error False Alarm Missing 

Decision Tree (1) 21.4% 7.8% 13.6% 

Decision Tree (2) 20.6% 8.3% 12.3% 

Neural Network 20.4% 5.4% 15.0% 

Table 3.1 Results of NN and DT without parse-level features 

 

With Parser-ased Features Classifier 

Annot. Error False Alarm Missing 

Decision Tree (1) 20.3% 5.9% 14.4% 

Decision Tree (2) 20.1% 8.0% 12.1% 

Neural Network 19.3% 5.5% 13.8% 

Table 3.2 Results of NN and DT using parse-level features 

It’s perhaps surprising to see that the annotation error rate for 
Decision Tree (1) is higher than the error rate achieved by the 
single feature Lattice-PWP. There are two reasons explaining this 
anomalous result. The first one is concerned with a drawback of 
Decision Tree classifiers, which is that it is easy to be overfitting 
on the training data. The other possible reason is the mismatch 
between the criterion to build the Decision Tree and the metrics to 
evaluate it. Decision Tree (1) is constructed on the basis of the 
information gain, but its performance is measured by the error 
rate. So in Decision Tree (2) we use the error rate directly as the 
criterion to choose feature and got a better result. However, it 
doesn’t mean the error rate is superior to the information gain as 
the criterion to construct the tree. If an entropy related metric is 
used to evaluate the performance, we may get a totally different 
result. We also observed that Decision Tree (2) tends to create 
fewer nodes than Decision Tree (1). 

Table 3.2 shows the performance of the annotator incorporated 
with the syntactic features. With the help of syntactic features, 
each of the three approaches produced some improvement on the 
annotation error rate. The relative reductions of error rate for these 
three approaches are 5.1%, 2.4% and 5.4% respectively. However, 
the missing rate of Decision Tree (1) doesn’t decrease with its 
error rate. 

3.2 Experiments on SVM 

The basic idea of SVM is to seek an optimal hyper-plane that 
separates two classes with maximum margin. SVM solves the 
problem that in some cases there isn’t a linear separating hyper-
plane in an ingenious way: mapping the samples to a higher 
dimension space using a kernel function, and seeking a hyper-



4. SUMMARY plane in that space. For the detail of SVM see [8], which has an 
excellent introduction about this approach. We evaluated five 
different kernel functions [13] for confidence annotation. 

Dot:    (3.1) jiji ,K xxxx •=)(

We investigated the use of various features for confidence 
annotation in a dialog domain. We described the application of 
parse-level knowledge for confidence annotation. Given their 
simple form and easy computation, the performance of the parse-
level features is very encouraging. Such results indicate that the 
information from knowledge sources other than the decoder could 
benefit confidence annotation. We also provided the experiment 
results for SVM-based annotation. The performance of the kernel 
function ANOVA and Radial demonstrate that SVM is a 
reasonable choice of classifier for confidence annotation. 
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