
Word Level Confidence Annotation using Combinations of Features

Rong Zhang and Alex Rudnicky

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

{rongz,air}@cs.cmu.edu

ABSTRACT
This paper describes the development of a word-level confidence
metric suitable for use in a dialog system. Two aspects of the
problems are investigated: the identification of useful features and
the selection of an effective classifier. We find that two parse-
level features, Parsing-Mode and Slot-Backoff-Mode, provide
notation accuracy comparable to that observed for decoder-level
features. However, both decoder-level and parse-level features
independently contribute to confidence notation accuracy. In
comparing different classification techniques, we found that
Support Vector Machines (SVMs) appear to provide the best
accuracy. Overall we achieve 39.7% reduction in annotation
uncertainty for a binary confidence decision, in a travel-planning
domain.

1. INTRODUCTION
Accurate confidence notation is a key capability for dialog
systems, since acting upon a misunderstood input may incur a
high cost to the user (either though an undesired side-effect or
through time wasted on correction). Current confidence notation
approaches lack the desired level of accuracy. We approach the
problem by increasing the variety of information sources used for
notation and by improving classification accuracy.

Chase [1] proposed the following framework for incorporating a
confidence metric into a recognition system: (1) At what level
should the confidence annotation be made; (2) What is the right
way to define what is an error and what isn’t; (3) What features
are useful and how useful; (4) How to build a model combining
the various features to create a confidence annotation. (5) How to
measure the goodness of the feature and model.

The answers to these questions depend on the particular
application that incorporates the confidence annotator. For the
CMU Communicator system [2], a telephone based dialog system
that supports planning in travel domain, both the utterance level
and word level confidence annotation are used. The former
measures the confidence of the whole utterance, and the latter
supplies the reliability description of each single word. In this
paper we focus on word-level confidence annotation and more
specifically on a binary tagging of word hypotheses, as correct or
incorrect, according to whether the system believes it is a correct
decoding result or not.

The key problem in confidence notation is the selection of
effective features [1][3][4][5][6] and a variety of features have
been proposed. These features can be assigned to one of four
categories depending on the information source: acoustic,
language model, N-best list or word lattice and other. All are

based on information from the decoder and moreover have the
disadvantage that they unavoidably overlap in the information that
they use, as is apparent in the common observation that the
performance achieved by all the features together isn’t much
better than that with only the best feature. Secondly, these features
are for the most part redundant with the information used to
generate hypotheses in the first place and so contribute little new
information, particularly at the acoustic level.

Given the limitations of purely decoder-based features, other
information source can be considered. Syntactic constraints and
grammar rules have proved to be helpful for selecting the best
hypothesis from an N-best list [7][8]. It’s reasonable to apply this
knowledge to the word-level confidence annotation because we
know that the correct recognition result tends to be grammatical
while an incorrect hypothesis is often (but not always)
ungrammatical. For large-vocabulary speech transcription, the
absence of a covering grammar limits the use of this knowledge
source. For limited domains (as typically is the case for a dialog
system) a high-coverage grammar is available, since parsing is a
necessary processing step. In this paper, we describe two parser-
level features, Parsing-Mode and Slot-Backoff-Mode.

Confidence annotation can be treated as a problem in pattern
classification and a large variety of classification approaches can
be considered for our problem. A recent technique, Support
Vector Machine [9][10], has been shown to achieve better
performance for long-standing problems than the traditional
approaches such as Neural Networks and Decision Tree. We
assess the suitability of SVMs for the confidence notation
problem.

The data set used in our experiments was taken from the speech
and log files produced by the CMU Communicator system (see
e.g. [2]). A total of 1781 utterances were used, from a contiguous
time period in the fall of 1999. The first 1000 utterance were used
as the training set and the remaining as the test set. All
experiments were performed using the Sphinx-2 [11] decoder.

2. FEATURES
In this section, we describe the decoder-based features and
introduce two parse-level features.

2.1 Decoder-based Features

We investigated nine decoder-based features, in four categories.
Most of these have been previously described in the literature and
appeared to be promising. All were reimplemented for the purpose
of this study.

Acoustic Features

1. PercPhAll-Frame [1]: The percentage of frames in the
hypothesized word which base phones match the base phones
in the phone-only decoding.

2. PercPhAll-Phone [1]: Similar to the previous feature except
the percentage is computed for phones rather than frames.

3. Normalized-Acoustic-Score[1]: The ratio between the
acoustic scores from the normal decoding and phone-only
decoding.

Language Model Features

4. LM-Backoff-Mode[xx]: The back-off mode of the trigram
language model.. This feature is computed over a four-word
contextual window that includes the current word, as well as
one preceding word and two succeeding words. For each
word in the window we note whether the 1, 2 or 3-gram
value was used to compute the language model score. For
each such pattern in the training set we compute the error
probability of the center word and threshold this value for the
confidence decision.

Word Lattice Features

5. Lattice-PWP-Acoustic [6]: The log posterior word probability
computed from the word lattice by summing and normalizing
the scores of paths passing through the hypothesized word. It
is computed using only the acoustic score.

6. Lattice-PWP-LM [6]: The log posterior word probability
computed from the word lattice but using only the language
model score.

7. Lattice-PWP [6]: Lattice-PWP-Acoustic + Lattice-PWP-LM.

N-Best List Features

8. N-Best-Homogeneity [1]: The ratio between the score of the
paths containing the hypothesized word to the total path
score of N-Best list.

9. N-Best-Word-Rate [1]: The ratio between the number of the
paths containing the hypothesized word to the total number
of paths in the N-Best list.

We use the Annotation Error Rate to measure the performance of
each feature:

tags of Number Total

tags assignedy incorrectl of Number
Rate Error Annotation =

(2.1)

The annotation error rate is often compared with the revised Word
Error Rate, which is different to its namesake for speech
recognition:

hypotheses in wordsof Number Total

insertions of Number ions substitutof Number
Rate Error Word

+
=

 (2.2)

Working only on the hypotheses, the confidence annotator is
unable to tell whether something is missing or not. So the revised

word error rate doesn’t consider the deletion errors and change the
denominator to the number of words in hypotheses rather than that
in references. If no confidence annotation is made to the decoding
result, namely, we simply label every word hypothesis as correct,
the annotation error rate would be equal to the revised word error
rate. The revised word error rate of the test set is 30.2%.

Feature parameters, except LM-Backoff-Mode, using a standard
maximum likelihood procedure, minimizing the number of
mislabels in the training set. For LM-Backoff-Mode, all of its
possible combination modes are labeled according to the
distribution of correct and incorrect hypotheses belonging to that
mode and classification is done by table lookup. Table 2.1 shows
the annotation error rate and the corresponding false alarm and
missing rate of each feature (the false alarm rate and missing rate
are normalized by the total number of words in hypotheses).

Feature Annot.
Error

False
Alarm

Missing

PercPhAll-Frame 30.2% 0% 30.2%

PercPhAll-Phone 30.2% 0% 30.2%

Normalized-Acoustic-Score 29.4% 2.6% 26.8%

LM-Backoff-Mode 26.1% 5.7% 20.4%

Lattice-PWP-Acoustic 30.2% 0% 30.2%

Lattice-PWP-LM 24.3% 6.5% 17.8%

Lattice-PWP 20.8% 6.0% 14.8%

N-Best-Homogeneity 26.8% 2.3% 24.5%

N-Best-Word-Rate 30.2% 0% 30.2%

Table 2.1 Performance of decoder-based single features

The result in Table 2.1 suggest that the language model features
outperform acoustic features. One source of evidence comes from
the comparison between LM-Backoff-Mode and Normalized-
Acoustic-Score, and the comparison between Lattice-PWP-LM
and Lattice-PWP-Acoustic. Obviously the former performs much
better than the latter. More evidence is obtained from the analysis
of Lattice-PWP, the best feature in Table 2.1. In computing this
feature, the weight for language model is increased to six times
the value used in normal decoding. Therefore a reasonable
conclusion is that the success of Lattice-PWP should be mainly
due to the language model score.

2.2 Parser-based Features

Good performance for language model features suggests the
importance of linguistic, syntactic and semantic knowledge.
Besides the language model, features of the parse of the decoding
hypothesis suggest themselves as a new information source. Given
the assumption that the speaker is cooperative, the correct
recognition results would be more grammatical than the incorrect
recognition result. Analysis of our data set shows that the ratio
between parsed and unparsed words for the class of correct
recognition result is 16:1 while the ratio is reduced to 1.8:1 for the
class of incorrect recognition result.

For a large-vocabulary speech recognition system, the absence of
accurate parsing makes the incorporation of syntactic knowledge
impossible. However, it isn’t a problem for dialog system in
which the parsing is a necessary stage. Our Communicator system
uses the Phoenix semantic parser [12]. Its outcome isn’t a
complete parsing tree but a sequence of slots that bracket the
concepts extracted from the utterance. This approach typically
produces a robust parse of the input and is therefore suitable as a
source of information about word-level confidence. We therefore
considered two additional features based on the parse result.

10. Parsing-Mode: This feature indicates if a word is parsed by
the grammar (i.e., bracketed as part of a slot). For a parsed
word, it further indicates the position of the word within the
slot, either edge or middle.

11. Slot-Backoff-Mode: Using a bigram language model for the
slots, each parsed word is assigned the back-off mode of the
slot that it belongs to. This feature is computed on a two-
word window that contains both the current word and the
next word (see LM-Backoff-Mode, above).

The simplicity of these features may lead one to doubt their
effectiveness. However our experiments shows they are useful
features for confidence annotation. Table 2.2 gives their
annotation error rates on the test set. Compared with the features
displayed in Table 2.1, the performance of parse-level features
exceeds all but Lattice-PWP. Their individual performance is
encouraging. The question of whether they can they work with
other features is addressed in the next section.

Features Annot.
Error

False
Alarm

Missing

Parsing-Mode 23.8% 6.5% 17.3%

Slot-Backoff-Mode 23.6% 6.3% 17.3%

Table 2.2 Parse-level single-feature performance

3. CLASSIFIERS
In this section, we describe our experimental results for SVM as
well as two traditional classifiers, Decision Tree and Neural
Networks. The experiments were conducted on the same data set
used in the previous experiments for decoder-level features. We
use the same annotation error rate as the metric.

3.1 Experiments using Decision Trees and Neural Nets

We first describe classification accuracy using two well-known
approaches, Decision Trees and Neural Nets. For thhe decision
Tree classifier we further investigated the impact of the choice of
objective function on accuracy. We compared two criteria for
choose the next feature when building the Decision Tree: Decision
Tree (1) uses a standard information gain criterion and Decision
Tree (2) uses the word error rate. We used a single BP Network,
with one hidden layer containing 50 nodes.

Table 3.1 presents the performance of the Decision Tree and
Neural Network classifiers using only decoder-level features.
Recalling the error rate achieved by the best feature, Lattice-PWP,
which is 20.8%, there is only a small improvement gained by
adding other decoder-based features (and no improvement for

Decision Tree (1) at all). The reason for this phenomenon has
been mentioned before. All of these features come from the
decoder and they overlap each other on the information that they
contain. The feature Lattice-PWP has information from both
acoustic model and language model while other features only
represent one aspect. So the importance of other decoder based
features is weakened.

Without Parser-based Features Classifier

Annot. Error False Alarm Missing

Decision Tree (1) 21.4% 7.8% 13.6%

Decision Tree (2) 20.6% 8.3% 12.3%

Neural Network 20.4% 5.4% 15.0%

Table 3.1 Results of NN and DT without parse-level features

With Parser-ased Features Classifier

Annot. Error False Alarm Missing

Decision Tree (1) 20.3% 5.9% 14.4%

Decision Tree (2) 20.1% 8.0% 12.1%

Neural Network 19.3% 5.5% 13.8%

Table 3.2 Results of NN and DT using parse-level features

It’s perhaps surprising to see that the annotation error rate for
Decision Tree (1) is higher than the error rate achieved by the
single feature Lattice-PWP. There are two reasons explaining this
anomalous result. The first one is concerned with a drawback of
Decision Tree classifiers, which is that it is easy to be overfitting
on the training data. The other possible reason is the mismatch
between the criterion to build the Decision Tree and the metrics to
evaluate it. Decision Tree (1) is constructed on the basis of the
information gain, but its performance is measured by the error
rate. So in Decision Tree (2) we use the error rate directly as the
criterion to choose feature and got a better result. However, it
doesn’t mean the error rate is superior to the information gain as
the criterion to construct the tree. If an entropy related metric is
used to evaluate the performance, we may get a totally different
result. We also observed that Decision Tree (2) tends to create
fewer nodes than Decision Tree (1).

Table 3.2 shows the performance of the annotator incorporated
with the syntactic features. With the help of syntactic features,
each of the three approaches produced some improvement on the
annotation error rate. The relative reductions of error rate for these
three approaches are 5.1%, 2.4% and 5.4% respectively. However,
the missing rate of Decision Tree (1) doesn’t decrease with its
error rate.

3.2 Experiments on SVM

The basic idea of SVM is to seek an optimal hyper-plane that
separates two classes with maximum margin. SVM solves the
problem that in some cases there isn’t a linear separating hyper-
plane in an ingenious way: mapping the samples to a higher
dimension space using a kernel function, and seeking a hyper-

4. SUMMARY plane in that space. For the detail of SVM see [8], which has an
excellent introduction about this approach. We evaluated five
different kernel functions [13] for confidence annotation.

Dot: (3.1) jiji ,K xxxx •=)(

We investigated the use of various features for confidence
annotation in a dialog domain. We described the application of
parse-level knowledge for confidence annotation. Given their
simple form and easy computation, the performance of the parse-
level features is very encouraging. Such results indicate that the
information from knowledge sources other than the decoder could
benefit confidence annotation. We also provided the experiment
results for SVM-based annotation. The performance of the kernel
function ANOVA and Radial demonstrate that SVM is a
reasonable choice of classifier for confidence annotation.

Poly: (3.2) d
jiji ,K)1()(+= • xxxx

Radial:)(-)(
2

jiji exp,K xxxx −= γ (3.3)

Neural: (3.4))()(batanh,K jiji += • xxxx
REFERENCES

Anova: (3.5) ∑ −=
p

d
jpipji exp,K)))((-()(2xxxx γ

Without Parse-based Features Kernel
Function

Annot. Error False Alarm Missing

Dot 21.9% 4.0% 17.9%

Polynomial 21.4% 4.1% 17.3%

Radial 19.9% 6.3% 13.6%

Neural 22.3% 3.9% 18.4%

ANOVA 19.7% 6.8% 12.9%

1. Lin Chase, “Error-Responsive Feedback Mechanisms for
Speech Recognition”. Ph.D. Thesis, Carnegie Mellon
University, April 1997.

2. Alex Rudnicky, Eric Thayer, et al., “Creating Natural
Dialogs in the Carnegie Mellon Communicator System”.
EuroSpeech, 1999.

3. Mitch Weintraub, Francoise Beaufays, et al., “Neural
Network Based Measures of Confidence for Word
Recognition”. ICASSP 1997.

4. Thomas Schaaf and Thomas Kemp, “Confidence Measures
for Spontaneous Speech Recognition”. ICASSP 1997.

Table 3.3 Results for SVM without parse-level features 5. D. Bansal and M.K.Ravishankar, “New Features for
Confidence Annotation”. ICSLP 1998.

With Parse-based Features Kernel
Function

Annot. Error False Alarm Missing

Dot 19.8% 4.2% 15.6%

Polynomial 19.2% 5.1% 14.1%

Radial 19.0% 7.2% 11.8%

Neural 19.9% 3.7% 16.2%

ANOVA 18.2% 5.5% 12.7%

6. Frank Wessel, Klaus Macherey and Ralf Schluter, “Using
Word Probabilities as Confidence Measures”. ICASSP 1998.

7. Manny Rayner, David Carter, Vassilios Digalakis and Patti
Price, “Combining Knowledge Sources to Recorder N-Best
Speech Hypothesis Lists”. Proceedings of the ARPA HLT
Meeting, 1994.

8. E. Brill, R. Florian, J. C. Henderson, and L. Mangu, “Beyond
N-grams: Can Linguistic Sophistication Improve Language
Modeling”. COLING-ACL 1998.

9. V. Vapnik, “The Nature of Statistical Learning Theory”.
Springer Verlag, 1995. Table 3.4 Results for SVM using parse-level features

10. Christopher Burges, “A Tutorial on Support Vector
Machines for Pattern Recognition”. Data Mining and
Knowledge Discovery, 2(2), 1998.

Table 3.3 and 3.4 present the experiment results of these five
kernel functions. By comparing Table 3.1 with Table 3.3, and
Table 3.2 with Table 3.4, one can note that SVM using the kernel
functions ANOVA and Radial perform better than Decision Tree
and Neural Network measured on annotation error rate. At the
same time their corresponding missing rates are relatively low.
Other three kernel functions, although they didn’t work very well
in the experiment, also provide acceptable performance. The
experiment results validate the utility of the parse-level features.
For each kernel function, the annotation error rate and the
corresponding missing rate are identically reduced by using these
features. For ANOVA, the relative reduction of error rate is 7.6%.

11. K. Lee, “Large Vocabulary Speaker-Independent Continuous
Speech Recognition: The SPHINX System”. Ph.D. Thesis,
Carnegie Mellon University, April 1988.

12. Sunil Issar and Wayne Ward, “CMU's Robust Spoken
Language Understanding System”. EuroSpeech 1993.

13. Stefan Ruping, “mySVM Manual”. University of Dortmund,
October, 2000.

As is the case with Neural Networks, tuning the parameters of an
SVM classifier is a non-trivial task. It should also be born in mind
that some kernel functions are not very robust and that a small
change in parameters may produce a noticeably result.

	Word Level Confidence Annotation using Combinations of Features
	
	
	
	
	
	
	Rong Zhang and Alex Rudnicky

	ABSTRACT
	INTRODUCTION
	FEATURES
	Acoustic Features
	Language Model Features
	Word Lattice Features
	N-Best List Features
	Annot.Error
	False Alarm
	Missing
	PercPhAll-Frame

	Annot.Error
	False Alarm
	Missing
	Parsing-Mode

	CLASSIFIERS
	
	Classifier
	Classifier
	Kernel Function
	Kernel Function

	SUMMARY
	REFERENCES

