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1 Introduction

In the business and economic environment, it is very important to accurately predict
various kinds of financial variables to develop proper strategies and avoid the risk of
potentially large losses. Few literature works have been devoted to the prediction of these
variables, such as stock market return and risk prediction (Tay and Cao, 2001;
Thomason, 1999b), sales forecasting (Steiner and Wittkemper, 1995) and monetary
policy. However, stock markets are often affected by many factors in fundamental and
technical analysis. In this situation, data mining techniques may be one of the ways to
satisfy the demand for the accurate prediction of financial variables.

In the past, most prediction models were based on conventional statistical methods,
such as time-series and multivariate analysis. In recent years, however, Artificial
Intelligence (AI) methodologies, including the Artificial Neural Networks (ANNs),
Genetic Algorithms (GA) and fuzzy technologies, have become popular research models.
They have been applied to many financial realms, including economic indices prediction
(Gestel et al., 2001; Leigh et al., 2002; Teixeira and Rodrigues, 1997; Zhang et al.,
2001), stock/futures price prediction (Kamijo and Tanigawa, 1990; Tay and Cao, 2001),
currency exchange rate prediction (Qi and Zhang, 2001; Shazly and Shazly, 1999),
option trading (Bailey et al., 1998), bond rating (Kim and Han, 2001; Shin and
Han, 2001), bankruptcy prediction (Lee et al., 1996; Zhang et al., 2001) and portfolio
optimisation (Kosaka et al., 1991). These AI techniques were developed to meet the
increasing demand for tools and methods that can predict, detect, classify and summarise
the structure of variables and define the relationships between them – without relying too
much on specific assumptions, such as linearity; or on error distributions, such as
normality. Many AI applications in the financial analysis have addressed this demand by
developing the parametric non-linear models.

In capital market research, stock or index prices are notoriously difficult to predict
using the traditional forecasting methods, such as least squares regression, because of
their chaotic nature. Consequently, several AI-based methodologies have been proposed
that claim better prediction capabilities than traditional models. Most researches,
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however, concentrated on the US and European capital markets; a very few studies have
focused on the Asian capital markets, which are famous for their thin-dish-like
characteristics, that is, they overreact to good or bad events, and are very volatile. In this
paper, we apply two AI techniques, Back Propagation (BP) neural networks and Support
Vector-Machines (SVMs), to construct the prediction models for forecasting the six
major Asian stock market indices and compare the results with a benchmark developed
by an autoregressive (AR) time-series model.

ANNs are a field of study within the AI area, where researchers employ a
‘biologically inspired’ method to process information. They are good for solving some
real-world problems especially in the areas of forecasting and classification decisions.
However, most of the research has learning pattern limitations because of the tremendous
noise and complexity of the input data. Some research indicates that the BPs and
SVMs can perform very well in the financial time-series forecasting, for example,
BP algorithms have been applied as alternatives to statistical techniques because of
their superior accuracy. On the other hand, SVMs deal with the non-linear function
fitting problem very efficiently because they seek to minimise an upper bound of
the generalisation error. Furthermore, they are unique, optimal and free from local
minima. We therefore explore the applicability of BP and SVMs to the financial
prediction problem.

The rest of this paper is organised as follows. In Section 2, previous research on
financial prediction is reviewed. The two prediction methods used in this paper are
discussed in Sections 3 and 4. Our research data and modelling are presented in Section 5
and our empirical results are given in Section 6. Finally, in Section 7, we present our
conclusions.

2 Related works

2.1 Review of conventional structural models

Many models have been developed to predict stock market behaviour, for example,
one-or multi-step ahead price prediction, price change direction, returns and risks,
portfolio asset allocation and trading strategy decisions. Structural models are the major
approach in the stock market prediction. Two renowned models are: the Capital Asset
Pricing Model (CAPM) (Sharpe, 1964), which describes the relationship between an
individual stock return – including its risk – and the market return; and the Arbitrage
Pricing Theory (APT) (Roll and Ross, 1980), which describes the relationship between
an individual stock return and some macroeconomic variables. In addition, Brock et al.
(1992) found non-linearities in market prices and showed that the use of technical
analysis indicators, under certain assumptions, may generate efficient trading rules
(Brock et al., 1992). The prices of other financial commodities also have this non-linear
dynamic property. Savit (1989), for example, suggested a non-linear dynamic model for
option prices.

In the last decade, statistical models, especially time-series models and multivariate
models, have become very popular in the construction of various kinds of stock market
behaviour prediction models, as well as the economic indicator models. With regard to
time-series models, Granger and Sin (2000) proposed AR- and ARCH-like models for
exploring the predictability of an alternative measure of risk. Also, Östgermark and
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Hernesniemi (1995) measured the influence of the freshness of information on the ability
of an investor to forecast a stock index and the stock index future by applying vector
models, known as VARMAX-models. This study used data from the Finnish FOX index,
depicting price movements of the Helsinki Stock Exchange and the FOX futures index
(Östgermark and Hernesniemi, 1995).

Most multivariate analytical prediction models choose some critical determinants as
input variables to predict stock market behaviour and try to detect the relationships
between the input and output variables, such as stock return, risk, etc. The choice of the
input variables is somewhat arbitrary, as there is no formal theory that supports stock
returns as a function of micro- and macroindices. The former includes some technical
analytical indicators, while the latter includes interest rates, Gross Domestic Production
(GDP), etc. The representative models of multivariate analytical prediction models are
linear regression models and multivariate discriminant analytical models (Baestaens and
van de Bergh, 1995; Chen et al., 1986; Ferson and Harvey, 1991).

2.2 AI models

Conventional statistical models have had limited success, primarily because the structural
relationship between an asset price and its determinants changes over time; hence, AI has
become more popular in the capital market research in the recent years. A number of
models use AI to forecast the price behaviour of the financial commodities and compare
the results with the traditional statistical methodologies or the price behaviour of
derivative financial commodities. Refenes et al. (1995), for example, modelled stock
returns with ANNs in the framework of APT and compared their study with regression
models. They showed that even the simple neural learning procedures, such as BP
algorithms easily outperform the best practice of regression models in a typical stock
ranking application within the framework of APT. Tsibouris and Zeidenberg (1995)
applied two models, a BP model and a temporal difference model, to six stock returns to
test the weak form of Efficient Market Hypothesis (EMH). They found some evidence
to question the null hypothesis that the stock market is weakly efficient. Steiner and
Wittkemper (1995) investigated the performance of several ANN models that forecast
the return of a single stock and showed that ANNs outperform comparable statistical
techniques in this area. They reported that the relationship between the return of a stock
and factors of the capital market is usually non-linear and may contain dependencies in
time. There may also be multiple connections between several factors (Steiner and
Wittkemper, 1995).

Shazly and Shazly (1999) suggested a hybrid system combining neural networks and
genetic training to forecast the three-month spot rate of exchange for four currencies: the
British pound, the German mark, the Japanese yen and the Swiss franc. The performance
of the model seems to be better than the predictions made by the forward and futures
rates (Shazly and Shazly, 1999). Tay and Cao (2001) applied SVMs to the price
prediction of five real futures contracts from the Chicago Mercantile Market.
Their objective was to examine the feasibility of using SVMs in financial time-series
forecasting by comparing them with a multilayer BP neural network. On the basis of
some deviation and direction performance criteria, the results show that the SVM
outperforms the BP neural network (Tay and Cao, 2001). Gestel et al. (2001) applied the
Bayesian evidence framework, already used successfully in the design of multilayer
perceptions, for Least Squares SVM (LS-SVM) regression to infer non-linear models for
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predicting a time-series and the related volatility. They applied the model to the
prediction of the US short-term interest rate and the DAX 30 index, and compared the
results with the time-series models, such as AR and GARCH (1,1) and buy and hold
strategies. LS-SVM outperformed the other models in terms of the percentage of correct
sign predictions by 5–8% (Gestel et al., 2001).

Wittkemper and Steiner (1996) used financial statements from 67 German
corporations for the period 1967–1986 to predict a stock’s systematic risk by different
methods, including the traditional methods such as the Blume and Fund models,
neural network models and GA models. They showed that the neural networks, whose
topologies had been optimised by a genetic algorithm, gave the most precise forecasts.

Although the superiority of the AI models has been shown in the US and European
financial markets, few researches have been carried out in Asian markets (see Table 1).
As it is not possible to generalise the superiority of a single AI model for all markets, we
designed two AI models to examine time-series forecasting in the six major Asian stock
markets as listed earlier, some of which are renowned for their thin-dish-like
characteristics.

Table 1 Research into the superiority of AI models

Research Algorithm Commodity Market

Refenes et al. (1995) BP neural network Stock UK

Tsibouris and Zeidenberg
(1995)

BP model and a temporal
difference model

Stock US

Steiner and Wittkemper
(1995)

ANN models Stock index German

Shazly and Shazly (1999) A hybrid system combining
neural networks and genetic
training

Currency UK, German,
Japan and
Swiss

Tay and Cao (2001) SVMs Futures US

Gestel et al. (2001) LS-SVM T-bill rate and stock
index

US and
German

Wittkemper and Steiner
(1996)

Neural networks whose
topologies are optimised by
a genetic algorithm

Stock German

3 SVMs for time-series forecasting

3.1 Introduction to SVMs

The SVM, which originated as an implementation of Vapnik’s Structural Risk
Minimization (SRM) principle (Vapnik, 1995), is now being used to solve a variety of
learning, classification and prediction problems. In many ways, an SVM performs the
same function as an ANN. For example, when both the input and output data
are available (supervised learning in ANN), the SVM can perform classification
and regression; but when only the input data are available, it can perform clustering,
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density estimation and principle component analysis. The SVM is more than just another
algorithm. It has the following advantages over an ANN:

1 it can obtain the global optimum

2 the overfitting problem can be easily controlled and

3 empirical testing has shown that the performance of SVMs is better than ANNs
in classification (Cai and Lin, 2002; Morris, and Autret, 2001) and in regression
(Tay and Cao, 2001).

The SVM deals with classification and regression problems by mapping the input data
into high-dimensional feature spaces. Its central feature is that the regression surface can
be determined by a subset of points or Support-Vectors (SV); all other points are not
important in determining the surface of the regression. Vapnik introduced a
ε-insensitive zone in the error loss function (Figure 1). Training vectors that lie within
this zone are deemed correct, whereas those that lie outside the zone are deemed
incorrect and contribute to the error loss function. As with classification, these incorrect
vectors also become the support-vector set. Vectors lying on the dotted line are SV,
whereas those within the ε-insensitive zone are not important in terms of the regression
function.

Figure 1 Approximation function (solid line) of the SV regression using a ε-insensitive zone
(the area between the dotted lines)

3.2 Support-vector regression

Here, we introduce the most important features of Support-Vector Regression (SVR).
Firstly, we discuss the simplest model of SVR, a linear regression in the feature space.
Though it is the easiest algorithm but usually not very useful in real-world applications, it
is a key for understanding complex SVR models. This is followed by a discussion of the
kernel functions that deal with non-linear decision surfaces. A discussion of SVMs is
given by Burges (1998), Cristianini and Taylor (2000) and Smola and Scholkopf (1998).

SVR is based on a similar concept to SVM classifiers. By generalising the SVM
algorithm for regression estimation, the SVR algorithm tries to construct a linear function
such that the training points lie within a distance ε (Figure 1). As with SVM classifiers,
we can also derive a quadratic programming problem to generalise non-linear regression
by using the kernel functions.



Comparison of SVMs and BP neural networks 55

Given a set of training data ( ){ }1 1( , ),..., ,l lx y x y X R⊂ × , where X denotes the space of

the input patterns, the goal of SVR is to find a function ( )f x that has at most ε  deviation

from the targets iy  for all of the training data and, at the same time, is as flat as possible.

Let the linear function f takes the form:
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The constant C > 0 determines the error margin trade-off between the flatness of f and
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The Lagrange relaxation of (3) is as follows:
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where * *, , andi i i iα α η η  are Lagrange multipliers. Thus, the dual optimisation problem of

(5) is as follows:
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Equation (1) can now be rewritten as follows:
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w is determined by training patterns ,ix  which are SVs. In a sense, the complexity of the

SVR is independent of the dimensions of the input space because it only depends on the
number of SV.

To enable the SVR to predict a non-linear situation, we map the input data into a
feature space. The mapping to the feature space F is denoted by

:
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The decision function can be computed by the inner products of T( ) ( )ix xΦ Φ without

explicitly mapping to a higher dimension, which is a time-consuming task. Hence, the
kernel function is as follows:

T( , ) ( ) ( )K x z x z≡ Φ Φ

By using a kernel function, it is possible to compute the SVR without explicitly mapping
in the feature space. The condition for choosing kernel functions should conform to
Mercers condition, which allows the kernel substitutions to represent dot products in
some Hilbert space.
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4 ANNs for time-series forecasting

4.1 Introduction to ANNs

An ANN is a biologically inspired form of distributed computation. It simulates the
functions of the biological nervous system by a composition of interconnected simple
elements (artificial neurons) operating in parallel, as shown in Figure 2. An element is a
simple structure that performs three basic functions: input, processing and output.
ANNs can be organised into several different connection topologies and learning
algorithms (Lippmann, 1987). The number of inputs to the network is constrained by the
problem type, whereas the number of neurons in the output layer is constrained by
the number of outputs required by the problem type. However, the number of hidden
layers and the sizes of the layers are decided by the designer.

Figure 2 A neural network with one hidden layer

ANNs have become popular because they can be generalised and do not make any
assumption about the underlying distribution of data. In addition, they have the ability to
learn any function, for example, the two-layer sigmoid/linear network can represent any
functional relationship between the input and output if the sigmoid layer has enough
neurons. ANNs have been successfully applied in different areas, including marketing,
retail, banking and finance, insurance telecommunications and operations management
(Smith and Gupta, 2000).

ANNs apply many learning rules, of which BP is one of the most commonly used
algorithms in financial research. We therefore use the BP to develop ANN models in this
paper. In the next section, we discuss the BP neural networks.

4.2 Back Propagation

BP trains multilayer feedforward networks with differentiable transfer functions to
perform function approximation, pattern association and pattern classification. It is the
process by which the derivatives of network error, with respect to network weights and
biases, are computed to perform computations backwards through the network.
Computations are derived using the chain rule of calculus.

There are several different BP training algorithms with a variety of different
computation and storage requirements. No single algorithm is best suited to all
the problems. All the algorithms use the gradient of the performance function to
determine how to adjust the weights to minimise the performance. For example, the
performance function of feed forward networks is the Mean Square Error (MSE).
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The basic BP algorithm adjusts the weights in the steepest descent direction (negative of
the gradient); that is, the direction in which the performance function decreases most
rapidly. The training process requires a set of examples of proper network inputs and
target outputs. During the training, the weights and biases of the network are iteratively
adjusted to minimise the network performance function. Figure 3 represents the
pseudocode of a BP training algorithm.

Figure 3 Gradient-descent algorithm

For the function approximation problems in networks that contain up to a few hundred
weights, the Levenberg–Maruardt algorithm generally has the fastest convergence.
This advantage is especially useful if a very accurate training is required.

One method for improving generalisation is early stopping, which divides the
available training samples into two subsets:

1 the training set, used for computing the gradient and updating the network
weights and biases

2 the validation set, the error of the validation set, which is monitored during the
training process, will normally decrease during the initial phase of training, as
does the training set error.

However, it typically increases when the network begins to overfit the data. After it has
increased for a specified number of iterations, the training is stopped, and the weights
and biases at the minimum of the validation error are returned.

5 Results of empirical testing

5.1 Data sets

We examined the six major Asian stock market indices in our experiment, namely the
Nikkei 225 (NK), the All Ordinaries (AU), the Hang Seng (HS), the Straits Times (ST),
the Taiwan Weighted (TW) and the KOSPI (KO). Data were collected from the Yahoo
Finance, the Taiwan Stock Exchange and the Korean Stock Exchange. The time periods
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used and the indices’ statistical data are listed in Table 2, and the daily closing prices
used as the data sets are plotted in Figure 4. The time periods cover many important
economic events, which we believe are sufficient for the training models.

Table 2 Description of data sets

Index Symbol Time period High Low Mean SD

Nikkei 225 NK 1984/1/4–2002/5/31 38,916 9420 19,433 6297.33

All Ordinaries AU 1984/8/3–2002/5/31 3440 712.40 2019.48 728.20

Hang Seng HS 1986/12/31–2002/5/31 18,301.69 1894.90 8214.55 4459.14

Straits Times ST 1987/12/28–2002/5/31 2582.94 805.04 1713.89 423.25

TAIEX TW 1971/1/5–2002/5/31 12,495.34 116.48 2819.70 3030.77

KOSPI KO 1980/1/4–2002/5/31 1138.75 93.1 516.33 317.58

Figure 4 Indices of the six Asian stock markets

We further transformed the original closing price into a five-day Relative Difference in
Percentage of price (RDP). According to Thomason (1999a,b) and Tay and Cao (2001),
this transformation has many advantages. The most important is that the distribution of
the transformed data becomes more symmetrical so that it follows a normal distribution
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more closely. This improves the predictive power of the neural network. Following the
prediction model used in the previous research (Tay and Cao, 2001; Thomason,
1999a,b), the input variables in this paper are determined from four-lagged RDP values
based on five-day periods (RDP-5, RDP-10, RDP-15 and RDP-20); and one transformed
closing index (EMA5), obtained by subtracting a five-day exponential moving average
from the closing indices (Table 3). Applying the RDP transform to the closing indices
over the period of the data removes the trend in prices. EMA5 is used to retain as much
information as possible from the original closing index because the application of the
RDP transform to the original closing index may remove some useful information.
The five-day-based input variables correspond to technical analysis concepts. The output
variable RDP+5 is obtained by first smoothing the closing index with a three-day
exponential moving average. The application of a smoothing transform to the dependent
variable generally enhances the prediction performance of the neural network
(Thomason, 1999b).

Table 3 Input and output variables

Indicator Calculation

Input variables

EMA5 5( ) ( )p i EMA i−

RDP-5 ( ( ) ( 5)) / ( 5) 100p i p i p i− − − ×

RDP-10 ( ( ) ( 10)) / ( 10) 100p i p i p i− − − ×

RDP-15 ( ( ) ( 15)) / ( 15) 100p i p i p i− − − ×

RDP-20 ( ( ) ( 20)) / ( 20) 100p i p i p i− − − ×

Output variables

RDP+5 ( ( 5) ( )) / ( ) 100p i p i p i+ − ×

3( ) ( )p i EMA i=

5.2 Preprocessing data and design of the models

Firstly, RDP values beyond the ± 2 Standard Deviations (SD) are selected as outliers and
replaced with the closest marginal values. Next, the preprocessing technique for data
scaling is performed. For the sake of comparison across data sets, all data points are
scaled in the range of –1 to 1, including the output data. Each of the six data sets is
partitioned into three subsets according to the time sequence in the ratio 80:10:10.
The first part is used for training; the second is a validating set that selects optimal
parameters for the SVR and prevents the overfitting found in the BP neural networks and
the last part is used for the testing.

5.3 Performance criteria

Although the MSE is a perfectly acceptable measure of performance, in practice the
ultimate goal of any testing strategy is to confirm that the results of models are robust
and capable of measuring the profitability of a system. It is important, therefore, to
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design a test from the outset. This is not always carried out with the level of rigor that it
merits, partly because of unfamiliarity with the established methods or practical
difficulties intrinsic to non-linear systems. Consequently, we designed test sets to
evaluate the effects of the models.

According to Tay and Cao (2001) and Thomason (1999a,b), the prediction
performance is evaluated using the following statistics: MSE, Normalised Mean Squared
Error (NMSE), Mean Absolute Error (MAE), Directional Symmetry (DS) and Weighted
Directional Symmetry (WDS). These criteria are defined in Table 4. MSE, NMSE
and MAE measure the correctness of a prediction in terms of levels and the deviation
between the actual and predicted values. The smaller the values, the closer the predicted
time-series values will be to the actual values. Although predicting the levels of price
changes (or first differences) is desirable, in many cases the sign of the change is equally
important. Most investment analysts are usually far more accurate at predicting
directional changes in an asset price than predicting the actual level. DS provides an
indication of the correctness of the predicted direction of RDP+5 given in the form of
percentages (a large value suggests a better predictor). WDS measures both the
magnitude of the prediction error and its direction. It penalises incorrectly predicted
directions and rewards directions that are correctly predicted. The smaller the value of
WDS, the better the forecasting performance will be in terms of both the magnitude and
direction.

Table 4 Performance metrics and their calculation
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5.4 SVM implementation

We applied Vapnik’s SVM for regression by using LIBSVM (http://www.csie.
ntu.edu.tw/~cjlin/libsvm/). The typical kernel functions used in SVRs are the polynomial
kernel ( , ) ( 1)dk x y x y= × +  and the Gaussian kernel ( )2 2( , ) exp 1/ ( )k x y x yδ= − − ,

where d is the degree of the polynomial kernel and δ 2 is the bandwidth of the Gaussian
kernel. We chose the Gaussian kernel as our kernel function because it performs well
under general smoothness assumptions.

The parameters to be determined are kernel bandwidth 2,δ  C and .ε  According to
Thomason (1999a,b) and Tay and Cao (2001), it showed that SVRs are insensitive to ,ε
as long as it is a reasonable value. Thus, we chose 0.001 for .ε  For 2δ  and C, we used
tenfold cross validation to choose suitable values. The values of the candidates
were 2 {2,1,0.5,0.1,0.01,0.001,0.0001}δ ∈  and {500,250,100,50,10,2},C ∈  respectively.
Table 5 gives the parameters obtained from the trials of each market scenario.

Table 5 Parameter set of each index

Country 2δ C

NK 2 1

AU 2 10

HS 2 1

ST 2 1

TW 2 1

KO 0.5 50

5.5 BP implementation

The BP models used in this experiment are implemented using the Matlab 6.1’s
ANN toolbox. Several learning techniques, such as the quasi-Newton method,
Levenberg-Marquardt algorithm and conjugate gradient methods could also be used. For
efficiency, however, we use the Levenberg–Marquardt algorithm. The architecture of the
BP model is as follows: the number of hidden nodes varies from 8 to 20 and the optimum
number of hidden nodes (10) that minimises the error rate on the validation set is
determined. The activation function of the hidden layer is sigmoid and the output node
uses the linear transfer function.

6 Results and discussion

For each market, we also designed an AR (1) time-series model as the benchmark for
comparison. The forecasting results of the SVM, BP and AR (1) for the test set are
collated in Table 6. In general, SVMs and BP models outperformed the AR (1) model in
the deviation performance criteria. However, in the direction performance criteria, the
AR (1) model proved superior, possibly because SVMs and BPs are trained in terms of
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deviation performance; the former to find the error bound and the latter to minimise
MSE. Thus, in the deviation performance criteria, they perform better than the
benchmark model AR (1). With regard to the direction criteria, the time-series model has
an intrinsic merit because it emphasises the trend of the series. Therefore, the two
AI models cannot outperform AR in the direction criteria in the six Asian markets
under study.

Table 6 Comparison of the results of SVM, BP and AR (1) model on the test set

MSE NMSE MAE DS WDS

NK SVM 0.049 0.945 0.167 57.930 0.713

BP 0.048 0.929 0.165 59.031 0.685

AR (1) 0.069 1.302 0.208 74.834 0.299

AU SVM 0.009 1.354 0.067 65.333 0.448

BP 0.009 1.339 0.068 56.444 0.581

AR (1) 0.013 2.043 0.086 77.283 0.261

HS SVM 0.012 0.901 0.087 54.450 0.813

BP 0.014 1.078 0.098 61.780 0.611

AR (1) 0.024 1.763 0.124 76.903 0.288

ST SVM 0.016 0.737 0.087 55.432 0.833

BP 0.015 0.692 0.083 54.596 0.836

AR (1) 0.032 1.473 0.119 75.698 0.320

TW SVM 0.040 0.868 0.156 55.367 0.778

BP 0.041 0.887 0.157 52.542 0.853

AR (1) 0.082 1.088 0.229 74.375 0.307

KO SVM 0.074 0.988 0.213 54.914 0.843

BP 0.077 1.021 0.215 56.006 0.719

AR (1) 0.105 1.367 0.266 74.844 0.321

The performances of the SVM and BP models are fairly good compared to Tay and Cao
(2001). The deviation criteria, such as NMSEs are less than 1, except for the AU index in
the SVMs. The NMSEs of BP are less than 1, except for the AU and KO indices.
As to the correctness of predicted direction, all the values of DS are more than 50%.
We also obtain smaller WDS values.

Figure 5 shows the predicted effects for the period September–October 2001, which
included the 9/11 terrorist attacks. The fitted lines of the BP and SVM models seem close
to each other and both are closer to the real value line than the AR (1) line because of the
smaller values of the deviation measurement. However, their direction performance is
not as good as the AR (1) line for the smaller value of the direction measurement in the
SVM and BP models.
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Figure 5 RDP+5 values of indices fitted by AR (1), BP and SVM models and their real values.
(a) Nikkei 225, (b) All Ordinaries, (c) Hang Seng, (d) Straits Times, (e) TAIEX and
(f) KOSPI

Table 7 gives the comparison of the results of the BP and SVM models. There is no
difference in the AU index for the three deviation performance criteria (MSE, NMSE
and MAE). In the HS, TW and KO data sets, the SVM models perform slightly better
than the BP models. On the other hand, the BP method performs only a little better than
SVMs in the NK and ST data sets. In total, there is no significant difference between the
performances of the two models in the deviation measurements. Taking the AR (1)
model as a benchmark to evaluate the two AI models, both seem to perform better than
AR (1) for all six markets in terms of the deviation measurements. For the other two
predicted direction criteria (DS and WDS), SVMs work better than BPs in the AU, ST
and TW indices; however, BPs work better than SVMs in the NK, HS and KO indices.
In all six markets, we find that the AR (1) model outperforms the SVM and BP models in
terms of the predicted direction criteria.
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Because there is no consistency in the superiority of the two AI models, our result
differs from that of Tay and Cao (2001). The performance of SVMs is not always better
than the BPs in these performance criteria. Table 7 summarises the comparison between
the two models. Generally speaking, based on the five performance criteria, SVMs fit the
AU, HS, TW and KO indices well, whereas BP fits NK and ST indices.

Table 7 Comparison of BP and SVMs on the test set

MSE NMSE MAE DS WDS Summary

NK − − − − − −
AU 0 − + + + +
HS + + + − − +
ST − − − + + −
TW + + + + + +
KO + + + − − +

‘0’ represents no difference between SVM and ANN, ‘+’ represents SVMs that perform
well and ‘–’ represents ANNs that perform well.

7 Conclusion

In this paper, we have examined the feasibility of applying two AI models, SVM and BP,
to financial time-series forecasting for the Asian stock markets, some of which are
famous for their thin-dish-like characteristics. Our experiments demonstrate that both
models perform better than the benchmark AR (1) model in the deviation measurement
criteria. Although previous research claims that the SVM method is superior to the BP,
there are some exceptions, for example, the NK and the ST indices. In general, the SVM
and the BP models perform well in the prediction of indices behaviour in terms of the
deviation criteria. Our experiments also show that the AI techniques can assist the stock
market trading and the development of the financial decision support systems.

Future research should apply more complex SVM methods and other ANN
algorithms to the forecasting of Asian stock markets. Direction prediction criteria are
important signals in the trading strategies of investors. Improving these criteria in
AI models is, therefore, another important issue in the financial research. In our current
models, we only select the return of index price information as input variables.
Enhancing the performance of prediction models by including other efficient input
variables (such as some macroeconomic variables), the relationships between different
markets and other trading information about the markets should also be the subject of
future research.
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