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Abstract

Advantages and limitations of the existing volatility models for forecasting foreign-exchange
and stock market volatility from multiscale and high-dimensional data have been identi/ed.
Support vector machines (SVM) have been proposed as a complimentary volatility model that
is capable of e0ectively extracting information from multiscale and high-dimensional market
data. SVM-based models can handle both long memory and multiscale e0ects of inhomogeneous
markets without restrictive assumptions and approximations required by other models. Preliminary
results with foreign-exchange data suggest that SVM can e0ectively work with high-dimensional
inputs to account for volatility long-memory and multiscale e0ects. Advantages of the SVM-based
models are expected to be of the utmost importance in the emerging /eld of high-frequency
/nance and in multivariate models for portfolio risk management.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Predictive capabilities of the data-driven models of the systems with complex multi-
scale dynamics depend on the quality and amount of the available data and on the algo-
rithm used to extract generalized mappings. Availability of the real-time, high-resolution
data constantly increases in many /elds of practical interest. However, the majority
of advanced statistical and machine learning algorithms, including neural networks
(NN), can encounter a set of problems called “dimensionality curse” when applied to
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high-dimensional data [4]. Nonstationarity of the system can also impose signi/cant
limitations on the size of a training set which leads to poor generalization ability of
the model.
A very promising algorithm that can tolerate high-dimensional and incomplete data

is support vector machine (SVM) [43,44]. SVMs have recently been receiving sig-
ni/cant interest due to excellent results in various applications [10]. SVM combines
the training eAciency and simplicity of linear algorithms with the accuracy of the best
nonlinear techniques, and systematic approach for optimal generalization. In many prac-
tical applications SVMs can tolerate high-dimensional and/or incomplete data and often
demonstrate performances superior to the best available techniques including NNs [10].
Note that in this article majority of the comparative references to NNs would imply
multilayer perceptron (MLP) or similar algorithms and architectures [4,33]. Recent suc-
cessful applications of SVM-based adaptive systems include image/object classi/cation
[32], face detection and recognition [30], text categorization [22], process identi/cation
in high-energy physics [42], cancer diagnostic and prognosis [26], gene classi/cation
[8], as well as many other scienti/c, engineering, medical, and biological applications.
Recently we have also applied SVM to a challenging problem of real-time space

weather forecasting [20]. It has been shown that the performance of the SVM-based
model for geomagnetic substorm prediction can be comparable (or superior) to that
of the best existing models including NNs [19]. The advantages of the SVM-based
techniques are expected to be much more pronounced in the next generation of the
space-weather forecasting models, which will incorporate many types of high-
dimensional, multiscale input data once real-time availability of this information
becomes technologically feasible.
Financial time-series forecasting is another challenging area where advantages of the

SVM-based systems could be very important. Although some /nancial applications of
the SVM have been reported [13,16] the full range of potential SVM applications in
/nance remains largely unexplored. For example, there are no comprehensive studies
of the SVM applications to volatility forecasting from multiscale and high-dimensional
market data. Exception is a recent work by Van Gestel et al. [41] where new SVM
formulation is introduced and applied to /nancial time series. Encouraging results of
the volatility modeling of the daily DAX30 closing pricing have been reported [41].
Volatility of the foreign exchange and stock markets is a very important quantity for

option pricing, value-at-risk (VaR) calculations used in portfolio risk management, and
for general decision making in real-time trading systems. The empirically con/rmed ex-
istence of volatility long memory (up to several months) may require high-dimensional
inputs in the volatility models. Multivariate structure of the volatility and covariance
models used in portfolio risk management further increases dimensionality of the model.
Emerging new /eld of the high-frequency /nance [11], dealing with multiscale market
data (from several minutes to several months), imposes even more demanding require-
ments on the dimensionality of the multiscale volatility models.
In this paper we review stylized facts and features of the market data and ex-

isting volatility models. Limitations of the known volatility models, especially their
ability to handle long memory and multiscale nature of the market data, are identi-
/ed. SVM-based system is proposed as a complimentary multiscale volatility model.
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Advantages and potential applications of the new model are discussed. Encouraging
preliminary results of the SVM model application to volatility forecasting of foreign
exchange market are reported. Although only foreign exchange market examples are
considered in this paper, almost all discussion is relevant to stock market data as well.
When necessary, speci/c di0erences between stock and foreign exchange markets are
mentioned.

2. Data description: stylized facts of �nancial data

In this section we de/ne the main measures used to characterize /nancial time
series and describe their universal properties revealed in numerous empirical studies.
A typical daily $US/DM exchange rate that will be used in this paper is shown in
Fig. 1a. Nonstationarity of the moving average of the time series is clear from this
/gure. The more practical quantity is the logarithm of return given by

ri = ln (Xi=Xi−1); (1)

where i is an index of a homogeneous time sequence (e.g., the end of each trading
day) and Xi is an exchange rate (or stock price) at time ti. The daily return time
series corresponding to Fig. 1a is shown in Fig. 1b. The moving average of the return
time series is almost stationary and close to zero. Another important quantity of the
/nancial time series is volatility. Optimal de/nition of the realized volatility depends
on the particular application and properties of the time series of interest. In many cases
realized volatility at time ti is de/ned as a standard deviation of returns in some interval
[ti−n; ti]. For purposes of this paper we consider realized volatility to be vi = |ri| or
vi = r2i that is a reasonable choice in many other applications as well [11].
Extensive empirical studies of the market data revealed several universal or stylized

facts. Returns have been found to have only very short-range correlation with typical
characteristic time of just a few trading minutes [7,11,27]. This absence of linear cor-
relation is illustrated in Fig. 2 where dotted line represents the autocorrelation function
of daily returns computed from $US/DM exchange rate from 1/1/1980 to 1/1/2000. On
the other hand volatilities (e.g., represented by absolute values of returns) are clustered
and have long-range memory (up to several months) [7,11,27]. The volatility autocor-
relation function exhibits hyperbolic (power-law) behavior. This is illustrated in Fig. 2
for $US/DM exchange data (solid line). To avoid strong seasonal variations we took
into account only week-day data in Fig. 2 and all subsequent examples in this paper.
This is a transformation from physical to business time which is a simpli/ed version
of a more sophisticated transform called 	-time necessary for higher frequency data
[11]. The other important fact is that probability density function (pdf) of returns is
fat-tailed and leptokurtic at small time scales (from several minutes to several days)
and approaches Gaussian at larger scales [7,11,27]. Volatilities have also been found to
be negatively correlated with corresponding returns. This fact (called leverage e0ect)
is more pronounced in stock markets (for both individual stocks and indices) and has
been clari/ed in recent detailed empirical studies [6].
A number of recent studies with high-frequency data [2,11] revealed essential het-

erogeneity of the market and multiscale nature of the market dynamics. Discovered
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Fig. 1. (a) $US/DM exchange rate and (b) daily returns from 1/1/1980 to 1/1/2000 (weekends excluded).
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Fig. 2. Autocorrelation fuction of daily returns (dotted line) and absolute returns (solid line) as a function
of lag in days. $US/DM exchange rate data from 1/1/1980 to 1/1/2000 are used (weekends excluded).

properties of multiscale volatilities have been found to be very important to under-
stand market structures. Contrary to the assumption of a homogeneous market where
all participants interpret news and react to them in the same way, the hypothesis of a
heterogeneous market assumes that di0erent market agents have di0erent time horizons
and dealing frequencies (from intraday dealers or market makers to central banks and
large commercial organization). In this framework, hyperbolic decline of the volatil-
ity correlations is interpreted as a superposition of exponential memories of the market
components with a wide range of time constants. Also in a heterogeneous market di0er-
ent agents are likely to settle for di0erent prices and decide to execute their transactions
in di0erent market situations, i.e., they create volatility. This is unlike the homogeneous
market where more agents mean faster price convergence and smaller volatility. Empir-
ical studies clearly indicate positive correlation of volatility and market presence that
supports heterogeneous market hypothesis [11].
Heterogeneous market hypothesis suggests that traders with di0erent time horizons

are interested in the volatility on di0erent time grids. A coarse time grid reMects the
view of a long-term trader and a /ne time grid that of a short-term trader. The “coarse”
(vc) and “/ne” (vf) volatilities can be de/ned as

vc(ti) =

∣∣∣∣∣∣
n∑

j=1

r(Nt∗; ti−1 + jNt∗)

∣∣∣∣∣∣ ; (2)
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Fig. 3. Lead-lagged correlations of the /ne and coarse-grain volatilities as a function of positive/negative lag
in weeks. Volatilities are computed on a weekly interval from daily returns. $US/DM exchange rate data
from 1/1/1980 to 1/1/2000 are used (weekends excluded).

vf(ti) =
n∑

j=1

|r(Nt∗; ti−1 + jNt∗)|; (3)

where Nt∗=Nt=n, Nt= ti − ti−1, the /rst return argument is the time scale over which
return is computed, and the second argument is the time of this return measurement.
For example, if we consider weekly volatility measures (on business time scale), then
vc is given by |∑5

i=1 ri| and vf by
∑5

i=1 |ri|, where ri is a daily return at the ith day.
An important e0ect found for both foreign exchange [11] and stock [2] markets is

asymmetric lead-lag correlation of volatilities. Lagged correlation is a linear correlation
of the two time series one of which is shifted (lagged) in time. Lagged correlation
reveals causal relations and information Mow structures in the market. To illustrate e0ect
of asymmetric volatility correlations we consider /ne volatility de/ned by averaged
absolute returns over /ve working days and coarse volatility de/ned as absolute return
over a full (working) week (i.e., n=5 in Eqs. (2) and (3)). Lead-lagged correlations of
these volatilities obtained from $US/DM exchange rate (from 1/1/1980 to 1/1/2000) are
shown in Fig. 3. We see a clear asymmetry: the coarse volatility predicts /ne volatility
better than the other way around, i.e., information Mows from large to small scales.
This is consistent with heterogeneous market hypothesis since short-term traders can
react to clusters of coarse volatility, while the level of /ne volatility does not a0ect
strategies of long-term traders.
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In the next section we review some of the existing volatility models. Although there
is no universal volatility model that incorporates or explains all of the stylized market
facts, di0erent models focus on di0erent set of features that /nally determines their
accuracy and applicability scope.

3. Existing volatility models and their limitations

There are two general classes of volatility models in widespread use: deterministic
and stochastic models. Deterministic models consider volatility (conditional variance)
to be a deterministic function of the past returns (and/or other observables) that are de-
scribed by some stochastic process (e.g., Wiener process). Stochastic volatility models
describe volatility by its own stochastic process. Below we give a short overview of the
mentioned volatility models and their limitations. Less universal volatility models such
as recently introduced “model-free” approach based on realized volatility computed
with high-frequency data [1] will not be discussed here.
A common example of the deterministic volatility models is autoregressive condi-

tional heteroskedastic (ARCH)-type models [5,14]. These models assume a particular
stochastic process for the returns and a simple functional form for the volatility. Volatil-
ity in these models is unobservable (latent) variable. The most widely used model of
this family is generalized ARCH (GARCH) process [5]. GARCH(p; q) process de/nes
volatility as

�2
t = �0 +

p∑
i=1

�ir2t−i +
q∑

i=1

�i�2
t−i ; (4)

where return process de/ned as

rt = �t�t : (5)

Here �t is an identically and independently distributed (i.i.d.) with zero mean and
variance 1. The most common choice for the return stochastic model (�t) is a gaussian
(Wiener process). However, to take into account realistic fat-tailed return distributions,
GARCH model is also used with Student-t distribution of returns. Parameters �i and �i

from equation are estimated from historical data by maximizing the likelihood function
(LF) which depends on the assumed return distribution. A typical implementation of
the GARCH model uses maximization of the LF by local gradient methods or by their
combination with robust nonlocal optimization techniques such as genetic algorithms
(GA) [11].
GARCH and other ARCH-type processes is the most common choice of the volatil-

ity model for both option pricing and portfolio risk management (VaR calculations).
GARCH process can reproduce a number of known stylized volatility facts including
mean reverting. Explicit speci/cation of the stochastic process and simpli/ed (linear)
functional form for the volatility allows to do simple analysis of the model proper-
ties and its asymptotic behavior. However assumptions of the ARCH-type models also
impose signi/cant limitations. For example, GARCH(p; q) model does not cover lever-
age and general nonlinear e0ects. Model parameter calculation from the market data is
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practical only for low-order models (small p and q), i.e., in general, it is diAcult to
capture direct long memory e0ects. Volatility multiscale e0ects are not covered (see
discussion in the next section). Finally, the model gives unobservable quantity that
leads to diAculty in quantifying the prediction accuracy and comparison with other
models. Some of these restrictions are relaxed in the GARCH model extensions. For
example, in threshold GARCH (TGARCH) [45] leverage e0ect is taken into account
in a simpli/ed form. However majority of the mentioned limitations cannot be resolved
in a self-consistent fashion.
A number of nonlinear extensions of the ARCH-type framework have been proposed.

One of the advantages of the true nonlinear volatility model is an adequate modeling of
the leverage e0ect that is not modeled accurately by the GARCH extensions. Donald-
son and Kamstra [12] proposed NN-based volatility model. They found that a proper
modeling of non-linearities captures volatility e0ects that are overlooked by traditional
models like GARCH and its extensions.
Schittenkopf et al. [34,35] added a detailed analysis of the distributional assumptions

underlying NN-based volatility models. They found that models with non-gaussian
distributions (mixture of gaussians or Student-t) are superior to those with gaussian
distributions. This is due to heteroskedastic nature of the /nancial time series and
fat-tail nature of return distribution. Non-gaussian (mixture of gaussians) models have
been formulated as mixture density NNs [4] where appropriate generalization of a
simple gaussian loss function (mean squared error) is made. In some regimes, mixture
density NNs have been shown to perform signi/cantly better than GARCH-type models.
Potential limitations of the NN-based models can be related to high-dimensional inputs
(“dimensionality curse” [4]) in such applications as small-scale volatility forecasting.
In a stochastic (latent) volatility models, volatility is not function purely of observ-

ables (returns) and is described by its own stochastic process. Stochastic volatility
approach gives more Mexibility than ARCH-type models that becomes important when
true volatility is high and ARCH-type model cannot provide enough mixing. Stochas-
tic volatility provides more mixing because observable and volatility shocks are imper-
fectly correlated with one another. One of the simplest and e0ective approaches models
volatility as Ornstein–Ulenbeck process which correlates with return stochastic process
to account for leverage e0ect [28].
As discussed in the previous section the volatility autocorrelation function is charac-

terized by hyperbolic (power-law) decay. A stochastic process that exhibits a hyperbolic
decay in its autocorrelation function is fractional Brownian motion introduced by Man-
delbrot and Van Ness [25]. This process is an extension of a Brownian motion (Wiener
process). Unlike Wiener process fractal Brownian motion has memory which makes
it attractive for stochastic volatility modeling. For example stochastic volatility frame-
work where volatility is described by Ornstein–Ulenbeck process driven by fractional
Brownian motion has been developed and applied to options on futures contracts [23].
Fractional Brownian motion mentioned above is an example of a mono-fractal pro-

cess, since the scaling exponent of this process is a linear function of the moment
order. However, recent studies of the market data suggest that this is not always the
case, i.e., function is nonlinear [36,37]. This empirical fact and analogy with multi-
plicative cascade theory of the developed turbulence [18] resulted in volatility models
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based on multi-fractal processes in the form of multiplicative cascades [21,29]. Another
multifractal approach is based on using simple mono-fractal process such as fractional
Brownian motion on a multi-fractal trading time [17,24]. The latter approach is inspired
by empirical analysis of the transaction times.
Stochastic volatility models are much more Mexible than ARCH-type and similar

deterministic models. They can account for more empirical properties of the volatility
dynamics. However it is signi/cantly more diAcult to analyze these models and make
reliable estimation of all their free parameters from the available market data. Therefore
stochastic volatility models are not yet widely accepted in real business applications.
In the following sections we will discuss only deterministic volatility models that

can provide signi/cant advantage over the standard ARCH-type approaches.

4. Multiscale volatility models for heterogeneous market

One of the most signi/cant limitations of the existing ARCH-type and similar de-
terministic volatility models is their inability to capture the heterogeneity of traders
acting at di0erent time horizons. For example, if the empirical data can be described
as generated by one GARCH process at one particular data frequency, the dynamics of
the data sampled at any other frequency is theoretically determined by temporal aggre-
gation (or disaggregation) of the original process. These derived processes at di0erent
frequencies can be compared to empirically estimated processes at the same frequen-
cies. Signi/cant deviation between theoretical and empirical results reject hypothesis
of only one GARCH process responsible for data generation [11,15]. In other words
model parameters obtained for the data of di0erent frequencies are signi/cantly di0er-
ent. It means that there is more than one relevant frequency in the volatility generation.
This is manifestation of the presence of many independent volatility components in the
data, i.e., the signature of market heterogeneity.
As discussed earlier there is asymmetry in the interaction between volatilities mea-

sured at di0erent frequencies (see Fig. 3). A coarsely de/ned volatility predicts a
/ne volatility better than the other way around. This e0ect is not present in a simple
GARCH model. More complex types of ARCH models have to be developed to ac-
count for the heterogeneity that is especially pronounced in high-frequency data. One
of such approaches is the Heterogeneous Autoregressive Conditional Heteroskedasticity
(HARCH) model [11].
The HARCH process has a variance equation based on multiscale returns, i.e., returns

computed over time intervals of di0erent sizes

�2
t = c0 +

n∑
j=1

cj

( j∑
i=1

rt−i

)2
; (6)

where return process is still given by (5) and cj are parameters of the model. The terms
of (6) reMect the component structure of the market in a natural way. HARCH model
is rather di0erent from the typical ARCH model. For example HARCH(2) model can
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be rewritten in two forms:

�2
t = c0 + c1r2t−1 + c2(rt−1 + rt−2)2; (7)

or

�2
t = c0 + (c1 + c2)r2t−1 + c2r2t−2 + 2c2rt−1rt−2: (8)

The last form (8) can be identi/ed as ARCH(2) model plus an important mixed term
rt−1rt−2, i.e., signs of returns matter.
HARCH can reproduce empirical behavior of lagged correlations as well as the long

memory of volatility. This is a qualitative di0erence between GARCH model and its
variations. For example fractionally integrated GARCH (FIGARCH) process [3] has
been designed to model the long memory but cannot reproduce the lead-lag correlations
since it is still based on returns measured over one time scale.
Although HARCH model is able to capture multiscale nature of volatility, appli-

cation of the HARCH model in its original form can be computationally prohibitive
especially for high-frequency volatility. This is due to many free parameters (corre-
sponding to di0erent market components) that need to be estimated from the market
data. For example modeling of the intraday volatility can easily result in hundreds of
free parameters since small-scale volatility depends on many larger scale volatilities.
To make HARCH model practical, additional restriction on the number of independent
market components has to be applied. This is done by clustering adjacent components
and assuming the coeAcients cj to be equal across the same cluster. No more than 7
clusters (components) are usually considered [11].
In the next section we describe our SVM-based approach as a complimentary mul-

tiscale volatility model that can relax a number of restrictive assumptions of the
ARCH/HARCH models including limitation on the number of independent market com-
ponents.

5. Multiscale volatility model based on support vector machine

SVMs developed by Vapnik [43,44] have recently been receiving signi/cant interest
due to excellent results in various applications [10]. We do not intend to give a detailed
introduction to SVM in this paper and refer readers to excellent books and papers on
this topic (e.g., see [10], and references therein). Also we provided a short introduction
to the main ideas used in SVM in our recent paper [20]. Here we give only a brief
description of the SVM and its main advantages.
SVM is a combination of a kernel-based approach and a structural risk minimiza-

tion (SRM) principle [43,44]. First step is a nonlinear mapping from the input to a
higher-dimensional feature space. Kernel-based approach allows to represent the dis-
criminant function in high-dimensional feature space without explicit dependence on
the feature space dimensionality. Kernel-based machine decouples the number of free
parameters (related to the machine capacity) from the size of the input space which can
be very large or even in/nite. SRM provides solid theoretical grounds for optimization
of the SVM generalization ability that is often superior to other approaches used in
machine learning algorithms.
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In general, training of the SVM for classi/cation and support vector regression (SVR)
reduces to the minimization problem with constraints that is a typical quadratic pro-
gramming problem [9]. Application of the SVR also involves /nding adequate loss
function. Loss function should not only be able to correctly approximate noise distri-
bution of the modeled data but also have a suitable form for optimization algorithm
used in a particular SVR implementation. The most common choice is the original
�-insensitive loss function (�-ILF) [10,43,44] which is similar to loss functions used in
the /eld of robust statistics. It has been shown [31] that the use of �-ILF is justi/ed
under assumption that the noise is a superposition of Gaussian processes. This noise
model is quite suitable for heteroskedastic market data we are interested in, and �-ILF
will be used in our volatility model.
The optimization problem for the �-SVR is given by

min�;�∗

[
1
2
(�− �∗)TQ(�− �∗) + �

l∑
i=1

(�i + �∗i ) +
l∑

i=1

yi(�i − �∗i )

]
;

l∑
i=1

yi(�i − �∗i ) = 0;

06 �i; �∗i 6C; i = 1; : : : ; l: (9)

Here C ¿ 0 is a regularization parameter (soft margins), (yi; xi) is a training set, l is a
number of training samples, Qij ≡ yiyjK(xi ; xj) is a positive semide/nite matrix, and K
is a kernel function representing inner product of the feature vectors. �-ILF is given by
L�(x; y; f)= |y−f(x)|�=max(0; |y−f(x)|− �), where f=

∑l
i=1(−�i+�∗i )K(xi; x)+b,

x∈Rn, y∈R1, and b∈R1 is a constant. Approximation function f is equivalent to
the hyperplane in the feature space implicitly de/ned by the kernel K that solves the
optimization problem (9).
Although SVM training is a typical quadratic programming problem, due to the

speci/cs of SVM applications such as large data sets and high density of the Q-matrix,
standard algorithms can become impractical. Recent developments mainly include al-
gorithms that employ various decomposition techniques [10], where at any time a /xed
size subset of �i is updated, while others are kept constant. Various heuristics are used
for choosing a working set at each step. Here we use an algorithm described by Chang
et al. [9] and implemented as LIBSVM library (www.csie.ntu.edu.tw/cjlin/libsvm).
Applicability of the SVM (SVR) model to our problem is based on the assump-

tion that volatility � can be described as a nonlinear function F of a time series of
returns r:

�2
i = F[ri−1; ri−2; : : : ; ri−n]; (10)

where index i− j correspond to time (ti − j dt), dt is a time lag interval and T = n dt
is a total length of the memory for previous inputs. Since F could be any nonlinear
function this framework automatically covers multiscale dependencies in a more general
form than HARCH model. A framework similar to original HARCH framework can

http://www.csie.ntu.edu.tw/cjlin/libsvm
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be useful to directly study inMuence of di0erent market components. This is given by

�2
i = F


ri−1; (ri−1 + ri−2); : : : ;


 n∑

j=1

ri−j




 ; (11)

where n is a number of the market multiscale components.
Practical usage of the described SVM models requires speci/cation of the volatility �

in (10) and (11). In this paper we adopt the most common choice as �2
i =r2i . However,

in general, other volatility measures can also be easily used in the described framework
and will be considered in our future work. For example, SVM can be trained on �i

time series that is calculated using intraday return data from day i [1].
We need also to ensure that trained SVM model will always output non-negative

numbers for �2. This is achieved by choosing mapping function as

�2
i = exp(F[ri−1; ri−2; : : : ; ri−n]): (12)

In operation terms it means that SVM is trained on ln(r2) instead of r2, and exp
mapping is applied to the SVM output.
Since the main advantage of the SVM is its ability to handle high-dimensional data,

SVM-based volatility model can model long memory and multiscale e0ects without
restrictive assumptions required by other model. For example, unlike HARCH model
SVM will not require strict limitations on the number of independent market compo-
nents.

6. Results

Building a full featured SVM-based volatility model that can be useful in real trading
infrastructure is beyond the scope of this paper. Therefore extensive comparison of the
SVM model and other available volatility models will be done in our future articles.
Here we illustrate the ability of the SVM-based volatility model to handle challenge of
the long-memory and multiscale e0ects of the real market data and present preliminary
comparison with two basic models.
As an example we still use $US/DM exchange rate. Steps of our analysis include

the choice of a 670 day time window from the exchange data covering the period from
1/1/1980 to 1/1/2000. To demonstrate sensitivity of the model performance to training
and test data, we also consider several time windows shifted from the base window
with a step of 5 business days. First 540 days of data in each window are used for
training and validation in a standard 5-fold cross-validation procedure. Remaining 130
days of data are used as test sets. Cross-validation procedure is used to optimize SVM
parameters such as regularization parameter C, �-parameter of the loss function, coef-
/cients of the kernel function, and the type of the kernel function itself. Optimization
is performed with respect to a linear correlation coeAcient between model outputs and
corresponding real data. Final conclusions of the model performance are based on the
results obtained on the test set.
As mentioned in the previous section SVM model in form (10) incorporates both

long memory and multiscale e0ects. To demonstrate that SVM can eAciently extract
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Fig. 4. Linear correlation of real and model volatilities for di0erent data windows shifted from a base window
by a variable number of business days. Large and small circles represent SVM model with 15 and 4 inputs,
respectively. Benchmark models are shown by a solid line (naive model) and crosses (GARCH(1,1) model).

information from lagged return vectors of high-dimension we train SVMs with small
and large number of lagged returns as inputs. In Fig. 4 correlation measure of real
and model volatilities for SVM model with 4 (small circles) and 15 (large circles)
inputs is shown for several data sets (shifted time windows). Here we used radial basis
function kernel: K(xi ; xj)=exp(− |xi−xj|2), where  is a constant. Optimal values for
parameters C, �, and  , obtained from 5-fold cross-validation procedure, vary with data
set. For data sets (windows) considered in Fig. 4, optimal values are the following:
10¡C ¡ 20; 0¡�¡ 0:01, and 0:1¡ ¡ 0:7. Large values of C indicate large noise
level that is typical for market data.
It is clear that SVM with large number of inputs demonstrates superior performance.

Due to existence of long term memory and multiscale e0ects, an algorithm, whose ability
of eAcient information extraction does not signi/cantly change with input dimensionality,
should produce noticeable improvement in forecasting when number of used lagged returns
is increasing. Fig. 4 demonstrate that this e0ect is observed in our case. This illustrates
that SVM can e0ectively extract information from high-dimensional inputs to improve
volatility forecasting with respect to the models of lower dimensionality.
In Fig. 4 we also compare SVM performance to that of naive and GARCH(1,1)

models (solid line and crosses, respectively). Naive model uses previous step as pre-
diction (i.e., r2i = r2i−1). GARCH coeAcients in (4) are estimated in a standard manner
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Fig. 5. Original (dotted line) and predicted (solid line) r2 time series obtained from (a) SVM and (b)
GARCH(1,1) models. Shift from the base data window is 10 business days.
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Fig. 6. Original (dotted line) and predicted (solid line) r2 time series obtained from (a) SVM and (b)
GARCH(1,1) models. Base data window is used.
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Fig. 7. Original (dotted line) and predicted (solid line) r2 time series obtained from (a) SVM and (b)
GARCH(1,1) models. Shift from the base data window is 20 business days.
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by maximizing LF calculated from training data [40]. It should be mentioned that
GARCH outputs latent (unobservable) variable. Therefore measuring GARCH model
performance with respect to realized r2 time series is an approximation frequently used
in practice [40].
It is clear that 15-input SVM consistently outperforms naive model and signi/cantly

outperform GARCH model in many cases. It is also clear that performance of both
SVM and GARCH model are quite sensitive to the data set used for training and
testing. We also found that when, instead of 5-fold cross-validation procedure, test
data are directly used as validation set to optimize SVM parameters, SVM performance
becomes more stable. It suggests that a better validation procedure may further improve
performance of the SVM volatility model. Similar e0ects are observed with SVM given
by (11). This con/guration is less general but directly relevant to multi-scale HARCH
model. The detailed comparison of this model with HARCH and related models will
be given in a future article.
To understand details of the prediction capabilities of the SVM volatility model it

is useful to compare predicted r2 time series with the real one. Three typical cases
are shown in Figs. 5(a), 6(a), and 7(a). The dotted and solid lines represent real and
predicted r2 time series, respectively. For comparison, corresponding time series from
the GARCH(1,1) model (solid line) are shown in Figs. 5(b), 6(b), and 7(b).
Fig. 5(a) illustrate a typical case where SVM shows exceptional ability to model

large-amplitude volatility Muctuations. This is especially impressive compared to GARCH
time series in Fig. 5(b). Accurate prediction of the large-amplitude volatility events is
one of the most important requirements in many /nancial applications including risk
management and optimization of trading strategies. Fig. 6(a) illustrate other typical case
where modeling of the large-amplitude events are less accurate but still signi/cantly
better than GARCH model predictions. Fig. 7(a) illustrates a case where SVM demon-
strates quite accurate prediction of some large Muctuations while signi/cantly overes-
timates other events. Note that majority of the volatility models (including GARCH)
usually underestimates large volatility Muctuations.

7. Discussion and conclusion

In this paper, we addressed the problem of volatility forecasting from high-dimensional
and multiscale market data. SVM-based model was proposed as a possible compli-
mentary approach to volatility forecasting. SVM combines the learning e0ectiveness of
linear machines with the classi/cation/regression power of the best nonlinear algo-
rithms. Unlike typical nonlinear techniques such as NNs, the size of the SVM input
space is decoupled from the number of free parameters and allows one to process
high-dimensional data without encountering the “high-dimensionality curse”. This makes
SVM a possible model for processing real-time multiscale and high-frequency market
data. SVM tolerance to incomplete data is another advantage of the SVM-based volatil-
ity model that can address the problem of the market data nonstationarity.
We reviewed the most important features of the foreign exchange and stock market

data and existing volatility models. Model limitations in describing volatility dynamics
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and ability to extract information from high-dimensional and multiscale historical mar-
ket data have been identi/ed. Adequate description of such important volatility features
as long term memory and asymmetric lead-lag correlation of volatilities (i.e., asym-
metric information Mow from large to small scales) leads to increasing dimensionality
of the model and is one of the most challenging problems. Most of the existing ap-
proaches address this problem with rather restrictive assumptions to make the model
computationally practical. These restrictions include limiting memory size, disregarding
multiscale volatility e0ects, and limiting number of independent market components in
some multiscale volatility models.
SVM’s ability to handle high-dimensional and incomplete data allows to signi/-

cantly relax those restrictions in the SVM-based volatility model introduced in this
paper. Since this model imposes no signi/cant restrictions on the length of the lagged
vector of input parameters (memory size) and on the number of independent multiscale
volatilities (market components), SVM model will allow to study parameter regimes
where other existing models become computationally unrealistic. Besides that SVM
models can automatically include such e0ects as volatility dependence on the sign of
the return (which is required to cover leverage e0ect) and general nonlinear e0ects that
are not covered by the models currently used in practice.
Our preliminary results with $US/DM exchange rate indicate that SVM model can ef-

/ciently extract information from the inputs with large number (up to 30) of multi-scale
volatilities and/or high-dimensional vector of lagged returns that is computationally
prohibitive for the most of the existing models. Our preliminary benchmark tests in-
dicate that SVM can perform signi/cantly better or comparable to both naive and
GARCH(1,1) models. The advantages of the SVM-based techniques are expected to be
much more pronounced in modeling small-scale (intraday) volatilities and high-frequency
/nancial data.
Our future work will include more detailed studies of the SVM-based volatility

model using larger data sets, both foreign exchange and stock market data, and ex-
tensive comparison of the SVM model accuracy with that of other models. We will
also perform an extensive search of the optimal SVM algorithm and more advanced
validation procedures. For example, in this paper we used standard � insensitive loss
function. However this may not be an optimal loss function for this application. Re-
cently Edelman [13] proposed a new loss function that performs better on a high-noise
data typical for /nancial time series. Van Gestel et al. [41] introduced new SVM
formulation that can also be an e0ective approach for volatility modeling.
Although proposed SVM-based volatility model may be superior to other approaches

in a number of practically important cases, the standalone usage of this model in a
trading or risk management system may not be realistic. This is because many /nancial
practitioners prefer to deal with models whose operations can be understood analytically
(at least in asymptotic limits) and this is not possible in a “black-box” machine learning
system. Although recent research e0orts to provide explanation facilities by generating
decision trees or rule bases from NN-based or other systems is quite successful [38,39],
simple analytical models are still the most popular ones.
Practical application of the SVM volatility model as a complimentary approach is

more realistic. For example, it can be used in parallel with one of the popular volatility
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models (e.g., GARCH). When the di0erence in the forecasted volatility value of the two
models exceeds prespeci/ed threshold, the value from the simple base model will not be
used but instead more sophisticated decision will be made. There is also a possibility
of SVM volatility model usage as a component in multiple experts framework or
committee machine [4].
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