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Abstract

Support vector machine (SVM) is a very speci1c type of learning algorithms characterized by the capacity
control of the decision function, the use of the kernel functions and the sparsity of the solution. In this paper,
we investigate the predictability of 1nancial movement direction with SVM by forecasting the weekly move-
ment direction of NIKKEI 225 index. To evaluate the forecasting ability of SVM, we compare its performance
with those of Linear Discriminant Analysis, Quadratic Discriminant Analysis and Elman Backpropagation Neu-
ral Networks. The experiment results show that SVM outperforms the other classi1cation methods. Further,
we propose a combining model by integrating SVM with the other classi1cation methods. The combining
model performs best among all the forecasting methods.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The 1nancial market is a complex, evolutionary, and non-linear dynamical system [1]. The 1eld of
1nancial forecasting is characterized by data intensity, noise, non-stationary, unstructured nature, high
degree of uncertainty, and hidden relationships [2]. Many factors interact in 1nance including political
events, general economic conditions, and traders’ expectations. Therefore, predicting 1nance market
price movements is quite diBcult. Increasingly, according to academic investigations, movements
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in market prices are not random. Rather, they behave in a highly non-linear, dynamic manner. The
standard random walk assumption of futures prices may merely be a veil of randomness that shrouds
a noisy non-linear process [3–5].
Support vector machine (SVM) is a very speci1c type of learning algorithms characterized by

the capacity control of the decision function, the use of the kernel functions and the sparsity of
the solution [6–8]. Established on the unique theory of the structural risk minimization principle to
estimate a function by minimizing an upper bound of the generalization error, SVM is shown to be
very resistant to the over-1tting problem, eventually achieving a high generalization performance.
Another key property of SVM is that training SVM is equivalent to solving a linearly constrained
quadratic programming problem so that the solution of SVM is always unique and globally optimal,
unlike neural networks training which requires nonlinear optimization with the danger of getting
stuck at local minima.
Some applications of SVM to 1nancial forecasting problems have been reported recently [9–13].

In most cases, the degree of accuracy and the acceptability of certain forecasts are measured by the
estimates’ deviations from the observed values. For the practitioners in 1nancial market, forecasting
methods based on minimizing forecast error may not be adequate to meet their objectives. In other
words, trading driven by a certain forecast with a small forecast error may not be as pro1table as
trading guided by an accurate prediction of the direction of movement.
The main goal of this study is to explore the predictability of 1nancial market movement direction

with SVM. The remainder of this paper is organized as follows. In Section 2, we introduce the
basic theory of SVM. Section 3 gives the experiment scheme. The experiment results are shown in
Section 4. Some conclusions are drawn in Section 5.

2. Theory of SVM in classi�cation

In this section, we present a basic theory of the support vector machine model. For a detailed
introduction to the subject, please refer to [14,15]. Let D be the smallest radius of the sphere that
contains the data (example vectors). The points on either side of the separating hyperplane have
distances to the hyperplane. The smallest distance is called the margin of separation. The hyperplane
is called optimal separating hyperplane (OSH), if the margin is maximized. Let q be the margin of
the optimal hyperplane. The points that are distance q away from the OSH are called the support
vectors.
Consider the problem of separating the set of training vector belonging to two separate classes,

G = {(xi; yi); i = 1; 2; : : : ; N} with a hyperplane wT’(x) + b = 0 (xi ∈Rn is the ith input vector,
yi ∈ {−1; 1} is known binary target), the original SVM classi1er satis1es the following conditions:

wT’(xi) + b¿ 1 if yi = 1; (1)

wT’(xi) + b6− 1 if yi =−1; (2)

or equivalently,

yi[wT’(xi) + b]¿ 1 i = 1; 2; : : : ; N; (3)

where ’ :Rn → Rm is the feature map mapping the input space to a usually high dimensional feature
space where the data points become linearly separable.
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The distance of a point xi from the hyperplane is

d(xi; w; b) =
|wT’(xi) + b|

‖w‖2 : (4)

The margin is 2=‖w‖ according to its de1nition. Hence, we can 1nd the hyperplane that optimally
separates the data by solving the optimization problem:

min�(w) =
1
2
‖w‖2 (5)

under the constraints of Eq. (3).
The solution to the above optimization problem is given by the saddle point of the Lagrange

function

LP1 =
1
2

‖w‖2 −
N∑
i=1

�i[yi(wT’(xi) + b)− 1] (6)

under the constraints of Eq. (3), where �i are the nonnegative Lagrange multipliers.
So far the discussion is restricted to the case where the training data is separable. To generalize

the problem to the non-separable case, slack variable �i is introduced such that

yi[wT’(xi) + b]¿ 1− �i (�i¿ 0 i = 1; 2; : : : ; N ): (7)

Thus, for an error to occur, the corresponding �i must exceed unity, so
∑N

i=1 �i is an upper bound
on the number of training errors. Hence, a natural way to assign an extra cost for errors is to change
the objective function from Eq. (5) to

min�(w; �) =
1
2

‖w‖2 + C
N∑
i=1

�i (8)

under the constraints of Eq. (7), where C is a positive constant parameter used to control the tradeoO
between the training error and the margin. In this paper, we choose C=50 based on our experiment
experiences. Similarly, solve the optimal problem by minimizing its Lagrange function

LP2 =
1
2
‖w‖2 + C

N∑
i=1

�i −
N∑
i=1

�i[yi(wT’(xi) + b)− 1 + �i]−
N∑
i=1

�i�i (9)

under the constraints of Eq. (7), where �i; �i are the non-negative Lagrange multipliers.
The Karush–Kuhn–Tucker (KKT) conditions [16] for the primal problem are

9LP2
9w = w −

N∑
i=1

�iyi’(xi) = 0; (10)

9LP2
9b =−

N∑
i=1

�iyi = 0; (11)

9LP2
9�i

= C − �i − �i = 0; (12)
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yi[wT’(xi) + b]¿ 1− �i; (13)

�i¿ 0; (14)

�i¿ 0; (15)

�¿ 0; (16)

�i[yi(wT’(xi) + b)− 1 + �i] = 0; (17)

�i�i = 0: (18)

Hence,

w =
N∑
i=1

�iyi’(xi): (19)

We can use the KKT complementarity conditions, Eqs. (17) and (18), to determine b. Note that
Eq. (12) combined with Eq. (18) shows that �j=0 if �j ¡C. Thus we can simply take any training
data for which 0¡�j ¡C to use Eq. (17) (with �j = 0) to compute b.

b= yj − wT’(xj): (20)

It is numerically reasonable to take the mean value of all b resulting from such computing. Hence,

b=
1
Ns

∑
0¡�j¡C

[(yj − wT’(xj)]; (21)

where Ns is the number of the support vectors.
For a new data x, the classi1cation function is then given by

f(x) = Sign(wT’(x) + b): (22)

Substituting Eqs. (19) and (21) into Eq. (22), we get the 1nal classi1cation function

f(x) = Sign


 N∑

i=1

�iyi’(xi)T’(x) +
1
Ns

∑
0¡�j¡C

(
yj −

N∑
i=1

�iyi’(xi)T’(xj)

) : (23)

If there is a kernel function such that K(xi; xj)=’(xi)T’(xj), it is usually unnecessary to explicitly
know what ’(x) is, and we only need to work with a kernel function in the training algorithm.
Therefore, the non-linear classi1cation function is

f(x) = Sign


 N∑

i=1

�iyiK(xi; x) +
1
Ns

∑
0¡�j¡C

(
yj −

N∑
i=1

�iyiK(xi; xj)

) : (24)

Any function satisfying Mercer’s condition [17] can be used as the kernel function. In this in-
vestigation, the radial kernel K(s; t) = exp(− 1

10‖s − t‖2) is used as the kernel function of the SVM
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because the radial kernel tends to give good performance under general smoothness assumptions.
Consequently, it is especially useful if no additional knowledge of the data is available [18].

3. Experiment design

In our empirical analysis, we set out to examine the weekly changes of the NIKKEI 225 Index.
The NIKKEI 225 Index is calculated and disseminated by Nihon Keizai Shinbum Inc. It measures the
composite price performance of 225 highly capitalized stocks trading on the Tokyo Stock Exchange
(TSE), representing a broad cross-section of Japanese industries. Trading in the index has gained
unprecedented popularity in major 1nancial markets around the world. Futures and options contracts
on the NIKKEI 225 Index are currently traded on the Singapore International Monetary Exchange
Ltd (SIMEX), the Osaka Securities Exchange and the Chicago Mercantile Exchange. The increasing
diversity of 1nancial instruments related to the NIKKEI 225 Index has broadened the dimension
of global investment opportunity for both individual and institutional investors. There are two basic
reasons for the success of these index trading vehicles. First, they provide an eOective means for
investors to hedge against potential market risks. Second, they create new pro1t making opportunities
for market speculators and arbitrageurs. Therefore, it has profound implications and signi1cance for
researchers and practitioners alike to accurately forecast the movement direction of NIKKEI 225
Index.

3.1. Model inputs selection

Most of the previous researchers have employed multivariate input. Several studies have examined
the cross-sectional relationship between stock index and macroeconomic variables. The potential
macroeconomic input variables which are used by the forecasting models include term structure of
interest rates (TS), short-term interest rate (ST), long-term interest rate (LT), consumer price index
(CPI), industrial production (IP), government consumption (GC), private consumption (PC), gross
national product (GNP) and gross domestic product (GDP) [19–27]. However, Japanese interest rate
has dropped down to almost zero since 1990. Other macroeconomic variables weekly data are not
available for our study.
Japanese consumption capacity is limited in the domestic market. The economy growth has a

close relationship with Japanese export. The largest export target for Japan is the United States of
America (USA), which is the leading economy in the world. Therefore, the economic condition
of USA inRuences Japan economy, which is well represented by the NIKKEI 225 Index. As the
NIKKEI 225 Index to Japan economy, the S& P 500 Index is a well-known indicator of the economic
condition in USA. Hence, the S& P 500 Index is selected as model input. Another import factor that
aOects the Japanese export is the exchange rate of US Dollars against Japanese Yen (JPY), which
is also selected as model input. The prediction model can be written as the following function:

Directiont = F(SS&P500t−1 ; SJPYt−1); (25)

where SS&P500t−1 and SJPYt−1 are 1rst order diOerence natural logarithmic transformation to the raw S& P
500 index and JPY at time t−1, respectively. Such transformations implement an eOective detrending
of the original time series. Directiont is a categorical variable to indicate the movement direction
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Fig. 1. First-order diOerence natural logarithmic weekly prices of NIKKEI 225 Index, S& P 500 Index and Japanese Yen
(70 observations of the period from January 3, 1990 to May 8, 1991).

of NIKKEI 225 Index at time t. If NIKKEI 225 Index at time t is larger than that at time t − 1,
Directiont is 1. Otherwise, Directiont is −1.
The above model inputs selection is only based on a macroeconomic analysis. As shown in

Fig. 1, the behaviors of the NIKKEI 225 Index, the S& P 500 Index and Japanese Yen are very
complex. It is impossible to give an explicit formula to describe the underlying relationship between
them.

3.2. Data collection

We obtain the historical data from the 1nance section of Yahoo and the Paci1c Exchange Rate
Service provided by Professor Werner Antweiler, University of British Columbia, Vancouver, Canada,
respectively. The whole data set covers the period from January 1, 1990 to December 31, 2002, a
total of 676 pairs of observations. The data set is divided into two parts. The 1rst part (640 pairs of
observations) is used to determine the speci1cations of the models and parameters. The second part
(36 pairs of observations) is reserved for out-of-sample evaluation and comparison of performances
among various forecasting models.

3.3. Comparisons with other forecasting methods

To evaluate the forecasting ability of SVM, we use the random walk model (RW) as a benchmark
for comparison. RW is a one-step-ahead forecasting method, since it uses the current actual value
to predict the future value as follows:

ŷ t+1 = yt; (26)

where yt is the actual value in the current period t and ŷ t+1 is the predicted value in the next
period.
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We also compare the SVM’s forecasting performance with that of linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA) and elman backpropagation neural networks (EBNN).
LDA can handle the case in which the within-class frequencies are unequal and its performance has

been examined on randomly generated test data. This method maximizes the ratio of between-class
variance to the within-class variance in any particular data set, thereby guaranteeing maximal separa-
bility. QDA is similar to LDA, only dropping the assumption of equal covariance matrices. Therefore,
the boundary between two discrimination regions is allowed to be a quadratic surface (for example,
ellipsoid, hyperboloid, etc.) in the maximum likelihood argument with normal distributions. Inter-
ested readers should refer to [28] or some other statistical books for a more detailed description. In
this paper, we derive a linear discriminant function of the form:

L(SS&P500t−1 ; SJPYt−1) = a0 + a1SS&P500t−1 + a2SJPYt−1 (27)

and a quadratic discriminant function of the form:

Q(SS&P500t−1 ; SJPYt−1) = a+ P(SS&P500t−1 ; SJPYt−1)
T + (SS&P500t−1 ; SJPYt−1)T(S

S&P500
t−1 ; SJPYt−1)

T; (28)

where a0; a1; a2; a;P;T are coeBcients to be estimated.
Elman Backpropagation Neural Network is a partially recurrent neural network. The connections

are mainly feed-forward but also include a set of carefully chosen feedback connections that let the
network remember cues from the recent past. The input layer is divided into two parts: the true
input units and the context units that hold a copy of the activations of the hidden units from the
previous time step. Therefore, network activation produced by past inputs can cycle back and aOect
the processing of future inputs. For more details about Elman Backpropagation Neural Network,
refer to [29,30].

3.4. A combining model

Given a task that requires expert knowledge to perform, k experts may be better than one if their
individual judgments are appropriately combined. Based on this idea, predictive performance can be
improved by combining various methods. Therefore, we propose a combining model by integrating
SVM with other classi1cation methods as follows:

fcombine =
k∑

i=1

wifi; (29)

where wi is the weight assigned to classi1cation method i,
∑k

i=1 wi = 1. We would like to deter-
mine the weight scheme based on the information from the training phase. Under this strategy, the
relative contribution of a forecasting method to the 1nal combined score depends on the in-sample
forecasting performance of the learned classi1er in the training phase. Conceptually, a well-performed
forecasting method should be given a larger weight than the others during the score combination. In
the investigation, we adopt the weight scheme as follows:

wi =
ai∑k
i=1 ai

; (30)

where ai is the in-sample performance constructed by forecasting method i.
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Table 1
Forecasting performance of diOerent classi1cation methods

Classi1cation method Hit ratio (%)

RW 50
LDA 55
QDA 69
EBNN 69
SVM 73
Combining model 75

Table 2
Covariances matrices of input variables when Directiont = −1

SJPYt−1 SS&P500t−1

SJPYt−1 0.00015167706 0.00002147347
SS&P500t−1 0.00002147347 0.00044862762

4. Experiment results

Each of the forecasting models described in the last section is estimated and validated by in-sample
data. The model estimation selection process is then followed by an empirical evaluation which is
based on the out-sample data. At this stage, the relative performance of the models is measured by
hit ratio. Table 1 shows the experiment results.
RW performs worst, producing only 50% hit ratio. RW assumes not only that all historic in-

formation is summarized in the current value, but also that increments–positive or negative—are
uncorrelated (random), and balanced, that is, with an expected value equal to zero. In other words,
in the long run there are as many positive as negative Ructuations making long term predictions
other than the trend impossible.
SVM has the highest forecasting accuracy among the individual forecasting methods. One reason

that SVM performs better than the earlier classi1cation methods is that SVM is designed to minimize
the structural risk, whereas the previous techniques are usually based on minimization of empirical
risk. In other words, SVM seeks to minimize an upper bound of the generalization error rather than
minimizing training error. So SVM is usually less vulnerable to the over-1tting problem.
QDA out-performs LDA in term of hit ratio, because LDA assumes that all the classes have

equal covariance matrices, which is not consistent with the properties of input variable belonging
to diOerent classes as shown in Tables 2 and 3. In fact, the two classes have diOerent covariance
matrices. Heteroscedastic models are more appropriate than homoscedastic models.
The integration of SVM and the other forecasting methods improves the forecasting performance.

DiOerent classi1cation methods typically have access to diOerent information and therefore produce
diOerent forecasting results. Given this, we can combine the individual forecaster’s various informa-
tion sets to produce a single superior information set from which a single superior forecast could be
produced.
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Table 3
Covariances matrices of input variables when Directiont = 1

SJPYt−1 SS&P500t−1

SJPYt−1 0.00018240800 −0.00002932242
SS&P500t−1 −0.00002932242 0.00044571885

5. Conclusions

In this paper, we study the use of support vector machines to predict 1nancial movement direction.
SVM is a promising type of tool for 1nancial forecasting. As demonstrated in our empirical analysis,
SVM is superior to the other individual classi1cation methods in forecasting weekly movement
direction of NIKKEI 225 Index. This is a clear message for 1nancial forecasters and traders, which
can lead to a capital gain. However, each method has its own strengths and weaknesses. Thus, we
propose a combining model by integrating SVM with other classi1cation methods. The weakness
of one method can be balanced by the strengths of another by achieving a systematic eOect. The
combining model performs best among all the forecasting methods.
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