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Abstract. Recently, Support Vector Regression (SVR) has been applied to finan-
cial time series prediction. Typical characteristics of financial time series are non-
stationary and noisy in nature. The volatility, usually time-varying, of the time series
therefore contains some valuable information about the series. Previously, we had
proposed to use the volatility in the data to adaptively changing the width of the
margin in SVR. We have noticed that upside margin and downside margin would
not necessary be the same, and we have observed that their choice would affect
the upside risk, downside risk and as well as the overall prediction performance. In
this work, we introduce a novel approach to adapt the asymmetrical margins using
momentum. We applied and compared this method to predict the Hang Seng Index
and Dow Jones Industrial Average.

Key words: Non-fixed and Asymmetrical Margin, Momentum, Support Vec-
tor Regression, Financial Time Series Prediction

1 Introduction

A time series is a collection of observations that measures the status of some
activities over time [8, 9]. It is the historical record of some activities, with a
consistency in the activity and the method of measurement, where the mea-
surement is taken at equally spaced intervals, e.g., day, week, month, etc. In
practice, there are various time series and they are collected in a wide range of
disciplines, from engineering to economics. For example, the air temperatures
of a certain city measured in successive days or weeks consists of a series; a
certain share prices occurred in successive days, months is another series.

Of all the different possible time series, the financial time series is unusual
since it contains several specific characteristics: small sample sizes, high noise,
non-stationarity, non-linearity, and varying associated risk.



Support Vector Machines (SVMs) are recent generalization models, which
find a generalization function through training samples, especially by small
samples. It also extends to solve the regression problem by Support Vector
Regression (SVR) [37, 30]. Nowadays, SVR has been successfully applied to
time series prediction [18, 16] and financial forecasting [33, 31].

Usually, SVR uses the ε-insensitive loss function to measure the empirical
risk (training error). This loss function not only measures the training error,
but also controls the sparsity of the solution. When the ε-margin value is
increased, it tends to reduce the number of support vectors [35]. Extremely,
a constant objective function may occur when the width of margin is too
wide. Therefore, the ε-margin value setting affects the complexity and the
generalization of the objective function indirectly.

Since the ε-margin value setting is very important, researchers proposed
various methods to determine it. Usually, there are four kinds of methods to
deal with it. First, most practitioners set the ε-margin value to a non-negative
constant just for convenience. For example, in [33], they simply set the margin
width to 0. This amounts to the least modulus loss function. In other instances
the margin width has been set to a very small value [37, 16, 7]. The second
method is the cross-validation technique [18, 6]. It is usually too expensive
in terms of computation. A more efficient approach is to use another variant
called ν-SVR [26, 28, 27, 21], which determines ε by using another parameter
ν. It states that ν may be easier to specify than ε. This introduces another
parameter setting problem. Another approach by Smola et al [29] is to find
the “optimal” choice of ε based on maximizing the statistical efficiency of a
location parameter estimator. They showed that the asymptotically optimal
ε should scale linearly with the input noise of the training data, and this
was verified experimentally, but their predicted value of the optimal ε does
not have a close match with their experimental results. In sum, the previous
methods tries to use a suitable or an optimal ε-margin value for that particular
data set; the ε-margin value is always fixed and symmetrical for that data set.
However, in stock market, it is volatile and the associated risk changes with
time. A fixed and symmetrical ε-margin setting may lack the ability to capture
stock market information promptly and may not be suitable for stock market
prediction. Furthermore, our experience showed that ε-margin value is not
necessary the same all the time [40].

In [40], we have extended the standard SVR with adaptive margin and
classified it into four categories: Fixed and Symmetrical Margin (FASM),
Fixed and Asymmetrical Margin (FAAM), Non-fixed and Symmetrical Mar-
gin (NASM), and Non-fixed and Asymmetrical Margin (NAAM). Comparing
FASM with FAAM, we know that the downside risk can be reduced by em-
ploying asymmetrical margins. While comparing FASM, FAAM with NASM,
a good predictive result is obtained by exploiting the standard deviation to
calculate the margin. However, NAAM requires the adaptation of the margin
width and the degree of asymmetry, and no exact algorithm for such margin
setting has been introduced.



In this work, we propose to use NAAM which combines two characteristics
of the margin; non-fixed and asymmetry, to reduce the predictive downside
risk while controlling the accuracy of the financial prediction. More specifi-
cally, we add a momentum term to achieve this. The width of the margin is
determined by the standard deviation [40]. The asymmetry of the margin is
controlled by the momentum. This momentum term can trace the up trend
and down tendency of the stock prices. Since the financial time series often
follows a long term trend but with small short term fluctuations, we exploit a
larger up margin and a smaller down margin to under-predict the stock price
when the momentum is positive and we use a smaller up margin and a larger
down margin to over-predict the stock price while the momentum is negative.
A simple illustration is shown in Fig. 1. In this work, we will use this downside
risk avoiding strategy in the prediction.
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Fig. 1. Margin setting

We organize the paper as follows. First, we give an overview of the time
series analysis models in Sect. 2. Next, we introduce the SVR with a general
ε-insensitive loss function and the concept of momentum in Sect. 3. The ac-
curacy metrics and experimental results are elucidated in Sect. 4. Finally, we
conclude the paper with a brief discussion and final remarks in Sect. 5.

2 Time Series Analysis Models

There are many models for time series analysis. Generally, they are classified
into linear and non-linear models, see Fig. 2.
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Fig. 2. Time series analysis models

Linear models have the characteristics of simplicity, usefulness and easy
application. They work well for linear time series, but may fail otherwise.
ARIMA models are typical linear models and used as the benchmark models
for time series analysis [4].

Although linear models have both mathematical and practical convenience,
there is no reason why real life time series should all be linear, and so the use of
non-linear models seems potential promising [9]. In the 1980’s, non-linear mod-
els were investigated and were proposed by the existing linear models [13, 22].
For example, Bilinear autoregressive or Bilinear AR models [12], time-varying
parameter models [24, 20] and threshold autoregressive (TAR) model [32].
These models are agreeable due to the scrutiny given in their development
for the standard statistical considerations of model specification, estimation,
and diagnosis, but their general parametric nature tends to require signifi-
cant a prior knowledge of the form of relationship being modeled. Therefore,
they are not effective for modeling financial time series because the non-linear
functions are hard to choose. Another class of non-linear models are general
non-linear models, also called machine learning. These models can learn a
model from a given time series without non-linear assumptions. They include
reinforcement learning, e.g., Q-learning [38], unsupervised learning, e.g., clus-
tering methods [15], supervised learning, e.g., decision tree [23] and neural
network (NN) models [25, 10, 1, 14], and statistical learning, e.g., k-nearest-
neighbors(kNN) [11].

SVMs are recently proposed to model the non-linear relationship of the
data. They have attracted the interests of researchers due to the following rea-
sons. First, SVMs are grounded on the VC theory, which claims to guarantee
the generalization [35, 36]. Second, SVMs were proposed to solve the classifica-
tion problem in the beginning. The margin maximization has visual geometric
interpretation [35, 2]. Third, training SVM leads to solve the Quadratic Pro-
gramming (QP) problem. For any convex programming problem, every local
solution will also be global. Therefore, SVM training always finds a global
solution, which is usually a unique solution [5]. Fourth, SVMs can tackle the



non-linear cases by introducing the kernel function [17]. Here, our work just
concentrate on the regression model, Support Vector Regression.

3 SVR with Momentum

In this section, we will give a brief introduction of Support Vector Regression
with a general ε-insensitive loss function. Then we will describe the concept
of momentum for the margin setting in Sect. 3.2.

3.1 SVR with a General ε-insensitive Loss Function

Usually, a regression problem is to estimate (learn) a function

f(x, λ) : X(Rd) → R,

where λ ∈ Λ, Λ is a set of abstract parameters, from a set of independent
identically distributed ( i.i.d. ) samples with size N ,

(x1, y1), . . . , (xN , yN ), xi ∈ X(Rd), yi ∈ R, (1)

where the above samples are drawn from an unknown distribution P (x, y).
Now the aim is to find a function f(x,λ∗) with the smallest possible value

for the expected risk (or test error) as

R[λ] =
∫

l(y, f(x, λ))P (x, y)dxdy, (2)

where l is a loss function which can be defined as one needs.
However, the probability of distribution P (x, y) is usually unknown. We

are unable to compute, and therefore to minimize the expected risk R[λ] in
(2), but we may know some information of P (x, y) from the samples in (1),
we can compute a stochastic approximation of R[λ] by the so called empirical
risk :

Remp[λ] =
1
N

N∑

i=1

l(yi, f(xi, λ)). (3)

This is because of that the law of large numbers guarantees that the empiri-
cal risk converges in probability to the expected risk. However, for practical
problem, the size of samples is small. Only minimizing the empirical risk may
cause problems, such as bad estimation or overfitting, and we cannot obtain
good result when new data come in.

To solve the small sample problem, the statistical theory, or VC theory,
has provided bounds on the deviation of the empirical risk from the expected
risk [34, 36]. A typical uniform Vapnik and Chervonenkis bound, which holds
with probability 1− η, has the following form:



R[λ] ≤ Remp[λ] +

√
h(ln 2N

h + 1)− lnη
4

N
, ∀λ ∈ Λ, (4)

where h is the VC-dimension of f(x, λ).
From this bound, it is clear that in order to achieve small expected risk,

i.e., good generalization performance, both the empirical risk and the ratio
between the VC-dimension and the number of samples has to be small. Since
the empirical risk is usually a decreasing function of h, it turns out that for a
given number of samples, there is an optimal value of the VC-dimension. The
choice of an appropriate value of h (which in most techniques is controlled by
the number of free parameters of the model) is very important in order to get
good performance, especially when the number of samples is small.

Therefore, a different induction principle, Structural Risk Minimization
Principle, was proposed and developed by Vapnik [34, 35, 36] in the attempt
to overcome the problem of choosing an appropriate VC-dimension.

SVMs were developed to implement the SRM principle [35]. They were
used in the classification at first [3]; they were also extended to solve the re-
gression problem [35]. When SVMs were used to solve the regression problem,
they were usually called Support Vector Regression (SVR). The aim of SVR
is to find a function f with parameters w and b by minimizing the following
regression risk:

Rreg(f) =
1
2
〈w,w〉+ C

N∑

i=1

l(f(xi), yi), (5)

where 〈, 〉 denotes the inner product, the first term can be seen as the mar-
gin in SVMs and therefore can measure the VC-dimension [35]. A common
interpretation is that the Euclidean norm, 〈w,w〉, measures the flatness of
the function f , minimizing 〈w,w〉 will make the objective function as flat as
possible [30].

The function f is defined as

f(x,w, b) = 〈w, φ(x)〉+ b, (6)

where φ(x) : x → Ω, maps x ∈ X(Rd) into a high (possible infinite) dimen-
sional space Ω, and b ∈ R.

In general, ε-insensitive loss function is used as the loss function [35, 30].
For this function, when the samples are in the range of ±ε, they do not
contribute to the output error. Thus, it leads to the sparseness of the solution.
The function is defined as

Γ (f(x)− y) =
{

0, if |y − f(x)| < ε
|y − f(x)| − ε, otherwise . (7)

In [40], we have introduced a general ε-insensitive loss function, Γ ′(f(xi)−
yi), i = 1, . . . , N , which is given as







0, if − d(xi) < yi − f(xi) < u(xi)
yi − f(xi)− u(xi), if yi − f(xi) ≥ u(xi)
f(xi)− yi − d(xi), if f(xi)− yi ≥ d(xi)

, (8)

where d(x), u(x) ≥ 0, are two functions to determine the down margin and
up margin respectively.

When d(x) and u(x) are both constant functions and d(x) = u(x), equa-
tion (8) amounts to the ε-insensitive loss function in (7) and we labeled it
as FASM (Fixed and Symmetrical Margin). When d(x) and u(x) are both
constant functions but d(x) 6= u(x), this case is labeled as FAAM (Fixed and
Asymmetrical Margin). In the case of NASM (Non-fixed and Symmetrical
Margin), d(x) = u(x) and they are varied with the data. The last case is
with a non-fixed and asymmetrical margin(NAAM), where d(x) and u(x) are
varied with the data and d(x) 6= u(x).

After using the standard method to find the solution of (5) with the loss
function of (8) as [35], we obtain w =

∑N
i=1(αi − α∗i )φ(xi), by solving the

following Quadratic Programming (QP) problem:

min Q(α,α∗) =
1
2

N∑

i=1

N∑

j=1

(αi − α∗i )(αj − α∗j )〈φ(xi), φ(xj)〉

+
N∑

i=1

(u(xi)− yi)αi +
N∑

i=1

(d(xi) + yi)α∗i ,

subject to
N∑

i=1

(αi − α∗i ) = 0, αi, α
∗
i ∈ [0, C], (9)

where αi and α∗i are corresponding Lagrange multipliers used to push and
pull f(xi) towards the outcome of yi respectively.

The above QP problem is very similar to the original QP problem in [35],
therefore, it is easy to modify the previous algorithm to implement this QP
problem. Practically, we implement our QP problem by modifying the libSVM
from [7] with adding a new data structure to store both margins: up margin,
u(x), and down margin, d(x). Obviously, this will not impact the time com-
plexity of the SVR algorithm; we just need more space, linear to the size of
data points, to store the corresponding margins.

Furthermore, using a kernel function, the estimation function in (6) be-
comes

f(x) =
N∑

i=1

(αi − α∗i )κ(x,xi) + b, (10)

where the kernel function, κ(x,xi) = 〈φ(x), φ(xi)〉, is a symmetric function
and satisfies the Mercer’s condition. In this work, we select a common kernel
function, RBF function, as the kernel function,



κ(x,xi) = exp(−β‖x− xi‖2), (11)

where β is the kernel parameter.
In the following, we exploit the Karush-Kuhn-Tucker (KKT) conditions to

calculate b. Here, they are

αi(u(xi) + ξi − yi + 〈w, φ(xi)〉+ b) = 0,

α∗i (d(xi) + ξ∗i + yi − 〈w, φ(xi)〉 − b) = 0,

and

(C − αi)ξi = 0,

(C − α∗i )ξ
∗
i = 0.

Therefore, when there exists i, such that αi ∈ (0, C) or α∗i ∈ (0, C), b can
be computed as follows:

b =
{

yi − 〈w,φ(xi)〉 − u(xi), for αi ∈ (0, C)
yi − 〈w,φ(xi)〉+ d(xi), for α∗i ∈ (0, C) .

When no α
(∗)
i ∈ (0, C), the average method [7] is used.

3.2 Momentum

Momentum is a well known term in physics. We borrow this term in the work.
The differences are: in physics, momentum is used to measure the change of
state of a body by external forces; in our work, the momentum is used to
measure the up and down trend of stock market, which is impelled by the
investors. The term in both areas reflects the difference of change, but with
different kinds of external forces: in our work, the external forces are the
investment of investors.

More specifically, we construct a margin setting, which is a linear com-
bination of the standard deviation and the momentum. The up margin and
down margin are set in the following forms:

u(xi) = λ1 × σ(xi) + µ×∆(xi), i = 1, . . . , N,

d(xi) = λ2 × σ(xi)− µ×∆(xi), i = 1, . . . , N, (12)

where σ(xi) is the standard deviation of input xi, ∆(xi) is the momentum at
point xi, λ1, λ2 are both positive constants, called coefficients of the margin
width and µ is a non-negative constant, called coefficient of momentum. Using
this margin setting (12), the width of margin at point xi is determined by
σ(xi) and the sum of λ1 and λ2, i.e.,

W (xi) = (λ1 + λ2)× σ(xi).



The standard deviation here is used to reflect the change of volatility; there-
fore, when in a high volatility mode, we use a broad width of margin; when
in a low volatility situation, we use a narrow width of margin.

For the setting of momentum, in fact, there are many ways to calculate
it. For example, it may be set as a constant. In this work, we exploit the
Exponential Moving Average (EMA), which is time-varying and can reflect
the up trend and down tendency of the financial data. An n-day’s EMA is
calculated by

EMAi = EMAi−1 × (1− r) + yi × r,

where r = 2/(1 + n) and it begins from the first day, EMA1 = y1. Here,
n is called the length of EMA. The current day’s momentum is set as the
difference between the current day’s EMA and the EMA in the previous k
day, i.e.,

∆(xi) = EMAi − EMAi−k (13)

where k is called the lag of momentum. Equation (13) actually detects the
degree of the change in the stock market.

From above configurations, we know that the margin setting of (12) in-
cludes the case of NASM (when µ = 0). When µ 6= 0, it is the case of NAAM.
If ∆(x) > 0, we know that an up trend occurs. Based on our downside risk
avoiding predictive strategy, we would use a larger up margin and a smaller
down margin to under-predict the stock price. While if ∆(x) < 0, i.e., in the
situation of down trend, we would use a smaller up margin and larger down
margin to over-predict the stock price.

In addition, in the margin setting of (12) and momentum setting of (13),
we have to specify the concrete setting of parameters. For the coefficients of
margin width, λ1 and λ2, they are set to 1

2 ; therefore, we can make the margin
width at day i equal to the standard deviation of input xi. For the coefficient
of momentum, µ, it is equal to 1; the lag of momentum, k, is equal to 1.
The setting of these two parameters is coming from our experience in [39].
Actually, the only undetermined parameter is the length of EMA, n. In the
following experiments, we use different length of EMA to test their effects and
we find that it is related to the volatility of financial data.

4 Experiments

In this section, we first define the performance measurement of our experi-
ments. Then we detail the setup of experiments with their results compared.

4.1 Accuracy Metrics

We use the following statistical metrics to evaluate the prediction perfor-
mance, including Mean Absolute Error (MAE), Up side Mean Absolute Error
(UMAE), and Down side Mean Absolute Error (DMAE). The definitions of



these criteria are listed in the Table 1. MAE is the measure of the discrepancy
between the actual and predicted values. The smaller the MAE, the closer are
the predicted values to the actual values. UMAE is the measure of up side
risk. DMAE is the measure of down side risk. The smaller the UMAE and
DMAE, the smaller are the corresponding predictive risks.

Table 1. Accuracy metrics

Metrics Calculation

MAE MAE = 1
m
×Pm

i=1 |ai − pi|
UMAE UMAE = 1

m
×Pm

i=1,ai≥pi
(ai − pi)

DMAE DMAE = 1
m
×Pm

i=1,ai<pi
(pi − ai)

ai and pi are the actual values and predicted values at day i respectively.
m is the number of testing data.

4.2 Experimental Procedure and Results

In this section, we conduct the SVR algorithm with four categories of margin
settings, Autoregressive (AR) model with order four and RBF network on two
indices respectively and compare their results.

Two indices are used in the experiments:

1) HSI: daily closing prices of Hong Kong’s Hang Seng Index from January
2nd, 1998 to December 29th, 2000.

2) DJIA: daily closing prices of Dow Jones Industrial Average from January
2nd, 1998 to December 29th, 2000.

The ratio of the number of training data and the number of testing data is set
to 5:1. Therefore, the corresponding training time periods and testing periods
are obtained and listed in Table 2.

Furthermore, we model the system as pt = f(xt), where f is learned by
the stated three models: SVR, AR and RBF network, from the training data;
xt = (at−4, at−3, at−2, at−1), at is the daily closing index in day t, an intrinsic
assumption here is that there is (non)linear relationship between sequential
five days’ index values. After finding the function f , we use the testing data
to test the predictive performance of the models.

The experiments are conducted on Sun Blade 1000, RAM 2GB and Solaris
8.



Table 2. Indices, time periods and parameters

Indices Training time periods Testing time periods C β

HSI 02/01/1998 - 04/07/2000 05/07/2000 - 29/12/2000 26 2−3

DJIA 02/01/1998 - 29/06/2000 30/06/2000 - 29/12/2000 2−1 21

4.2.1 SVR Algorithm

Before generating the model, we perform a cross-validation on the training
data to determine the parameters that are needed in SVR. They are C, the
cost of error and β, the parameter of kernel function. The parameters we used
are listed in Table 2.

4.2.1.1 NASM and NAAM

The margins setting is based on (12). More specifically, in the case of NASM,
we set λ1 = λ2 = 1

2 and µ = 0, thus the overall margin widths are equal to the
standard deviation of input x. In the case of NAAM, we also fix λ1 = λ2 = 1

2 ;
therefore, we have a fair comparison of NASM case. From our experience [39],
k = 1 and µ = 1 are suitable for different data sets. The uncertain term for
the margin setting is n, the length of EMA. Hence, we use different n, equal
to 10, 30, 50, 100 respectively to test the effect of the length of EMA. From
the result of Table 3 and Table 4, we can see that the DMAE values in all
cases of NAAM are smaller than that in NASM case, thus we have a smaller
predictive downside risk in NAAM case. This also meets our assumption, i.e.,
it is a downside risk avoiding strategy for the prediction. We also see that
the MAE gradually decreases with the length of EMA increases and when the
length equals 100, the MAE is the smallest in all case of NAAM and is smaller
than that of NASM. In Table 4, when the length equals 30, the MAE is the
smallest in all cases of NAAM and it is also smaller than that of NASM.

Table 3. Effect of the length of EMA on HSI

type n MAE UMAE DMAE

NASM 217.18 108.95 108.23
10 221.01 119.70 101.31

NAAM 30 218.32 123.56 94.76
50 217.12 120.31 96.81

100 216.60 120.60 96.00

Here, we plot the daily closing prices of HSI with 100-days’ EMA and the
prices of DJIA with 30-days’ EMA in Fig. 3 and Fig. 4 respectively and list
the Average Standard Deviations (ASD) of input x of the training data sets



Table 4. Effect of the length of EMA on DJIA

type n MAE UMAE DMAE

NASM 87.17 44.17 43.00
10 86.61 43.79 42.81

NAAM 30 86.58 45.10 41.48
50 87.36 47.02 40.34

100 87.02 45.67 41.35

of both data sets, the Average of Absolute Momentums (AAM) of input x
for the best length of both training data sets respectively in Table 5. We can
observe that the ASD of HSI is higher than that of DJIA and the ratio of
AAM to ASD is smaller for HSI than that for DJIA. This indicates that the
data is more volatile in the HSI data; hence we may use a longer length of
EMA to represent this volatility for the prediction.
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Table 5. ASD and AAM

AAM
data set ASD

n ∆
ratio

HSI 182.28 100 20.80 0.114
DJIA 79.95 30 15.64 0.196

4.2.1.2 FASM and FAAM

For the fixed margin setting, we set the margin width to 0.03, i.e. u(x)+d(x) =
0.03, for both data sets. The up margin, u(x), ranges from 0 to 0.03, each in-
crements is 0.0075. For these setting, we obtain the results in Table 6 for data
set HSI and in Table 7 for data set DJIA. Comparing the corresponding re-
sults of non-fixed margin settings (Table 3 and Table 4) with the results of
fixed margin settings (Table 6 and Table 7), we observe that the predictive
performance of non-fixed margin settings is better than that of the fixed mar-
gin cases generally. From Table 6 and Table 7, we can see that the MAE is
in a wide range. This means that using a fixed margin setting may have bad
predictive result which gives more risk.



Table 6. Fixed margin results on HSI

u(x) d(x) MAE UMAE DMAE

0 0.03 259.32 43.37 215.95
0.0075 0.0225 233.28 66.21 167.07
0.0150 0.0150 220.50 94.07 126.43
0.0225 0.0075 216.87 126.96 89.91
0.03 0 227.17 167.34 59.83

Table 7. Fixed margin results on DJIA

u(x) d(x) MAE UMAE DMAE

0 0.03 99.97 17.00 82.97
0.0075 0.0225 90.42 25.24 65.18
0.0150 0.0150 86.70 35.46 51.24
0.0225 0.0075 87.61 48.47 39.14
0.03 0 93.24 64.30 29.94

4.2.2 AR Model

Here, we use the AR model with order four to predict the prices of HSI and
DJIA; hence, we can compare the AR model with NASM, NAAM in SVR
with the same order. The results are listed in the Table 8. We can see that
NASM and NAAM are superior to AR model with same order.

Table 8. Results on AR(4)

data set MAE UMAE DMAE

HSI 217.75 105.96 111.79
DJIA 88.74 46.36 42.38

4.2.3 RBF network

The RBF network we used is implemented in NETLAB [19]. We perform the
one-step ahead prediction to predict the prices of HSI and DJIA. More specif-
ically, we set the effect of hidden units to 3, 5, 7, 9 and set other parameters
as default. The corresponding results are listed in Table 9 for HSI, in Table 10
for DJIA respectively. Comparing these two tables with Table 3 and Table 4,
we can see that NASM and NAAM are also better than the RBF network.



Table 9. Effect of number of hidden units on HSI

# hidden MAE UMAE DMAE

3 386.65 165.08 221.57
5 277.83 128.92 148.91
7 219.32 104.15 115.17
9 221.81 109.46 112.35

Table 10. Effect of number of hidden units on DJIA

# hidden MAE UMAE DMAE

3 88.31 44.60 43.71
5 98.44 48.46 49.98
7 90.53 46.22 44.31
9 87.23 44.09 43.14

5 Discussion and Conclusion

In this work, we propose to use non-fixed and asymmetrical margin (NAAM)
setting in the prediction of HSI and DJIA. From the experiments, we make
the following observations:

1. Comparing NAAM with the case of NASM which just uses the standard
deviation, we find that by adding the momentum to set the margin we can
reduce the predictive downside risk. We may also improve the accuracy of
our prediction by selecting a suitable length of EMA.

2. The selection of the length of EMA may depend on the volatility of the
financial data. A long term EMA may be suitable for a higher volatility
financial time series. A short term EMA may be suitable for the opposite
case.

3. In SVR, non-fixed margin settings (NAAM and NASM) are better than
the fixed margin settings (FAAM and FASM). Using a fixed margin setting
may have more risk, which results in poor performance.

4. The SVR algorithm with NASM and NAAM outperforms the AR model
with the same order.

5. The SVR algorithm with NASM and NAAM is also better than the RBF
network.

In our work, how to find more suitable parameters easily, i.e., C and β,
for a specific data set is still a problem. In addition, we just consider the
momentum term to trace the changing trend of the stock market here. Other
more general or robust methods are still needed to explore and to apply in
the margin settings to capture the information of stock market promptly.
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18. K. R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vap-
nik. Predicting Time Series with Support Vector Machines. In W. Gerstner,
A. Germond, M. Hasler, and J. D. Nicoud, editors, ICANN, pages 999–1004.
Springer, 1997.

19. Ian T. Nabney. Netlab: Algorithms for Pattern Recognition. Springer, London;
New York, 2002.

20. D. F. Nicholls and A. Pagan. Varying Coefficient Regression. In E.J. Hannan,
P.R. Krishnaiah, , and M.M. Rao, editors, Handbook of Statistics, volume 5,
pages 413–449, North Holland, Amsterdam, 1985.

21. B. Schölkopf Pai-Hsuen Chen, Chih-Jen Lin. A Tutorial on ν-Support Vector
Machines. Technical report, National Taiwan University, 2003.

22. M. B. Priestley. Spectral Analysis and Time Series. New York: Academic Press,
London, 1981.

23. J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1:81–106, 1986.
24. Baldev Raj and Aman Ullah. Econometrics: A Varying Coefficients Approach.

New York: St. Martin’s Press, 2nd edition, 1981.
25. B. D. Ripley. Statistical Aspects of Neural Networks. In O. E. Barndorff-Nielsen,

J. L. Jensen, and W. S. Kendall, editors, Network and Chaos – Statistical and
Probablistic Aspects, pages 40–123, London, 1993. Chapman and Hall.

26. B. Schölkopf, P. Bartlett, A. Smola, and R. Williamson. Support Vector Re-
gression with Automatic Accuracy Control. In L. Niklasson, M. Bodén, and
T. Ziemke, editors, Proceedings of ICANN’98 Perspectives in Neural Comput-
ing, pages 111–116, Berlin, 1998. Spring.

27. B. Schölkopf, P. Bartlett, A. Smola, and R. Williamson. Shrinking the Tube:
A New Support Vector Regression Algorithm. In M. S. Kearns, S. A. Solla,
and D. A. Cohn, editors, Advances in Neural Information Processing Systems,
volume 11, pages 330 – 336, Cambridge, MA, 1999. MIT Press.

28. B. Schölkopf, A. Smola, R. Williamson, and P. Bartlett. New Support Vector Al-
gorithms. Technical Report NC2-TR-1998-031, GMD and Australian National
University, 1998.

29. A. Smola, N. Murata, B. Schölkopf, and K.-R. Müller. Asymptotically Optimal
Choice of ε-Loss for Support Vector Machines. In Proc. of Seventeenth Intl.
Conf. on Artificial Neural Networks, 1998.

30. A. Smola and B. Schölkopf. A Tutorial on Support Vector Regression. Technical
Report NC2-TR-1998-030, NeuroCOLT2, 1998.

31. E. H. Tay and L. J. Cao. Application of Support Vector Machines to Financial
Time Series Forecasting. Omega, 29:309–317, 2001.

32. H. Tong. Non-Linear Time Series. Clarendon Press, Oxford, 1990.
33. T. B. Trafalis and H. Ince. Support Vector Machine for Regression and Ap-

plications to Financial Forecasting. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks (IJCNN2000), volume 6,
pages 348–353. IEEE, 2000.

34. V. N. Vapnik. Estimation of Dependencies Based on Empirical Data. (in Rus-
sian), Nauka, Moscow, 1979.

35. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
1995.

36. V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
37. V. N. Vapnik, S. Golowich, and A. Smola. Support Vector Method for Function

Approximation, Regression Estimation and Signal Processing. In M. Mozer,



M. Jordan, and T. Petshe, editors, Advances in Neural Information Processing
Systems, volume 9, pages 281–287, Cambridge, MA, 1997. MIT Press.

38. C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cam-
bridge, England, 1989.

39. Haiqin Yang. Margin Variations in Support Vector Regression for the Stock
Market Prediction. Master’s thesis, Chinese University of Hong Kong, 2003.

40. Haiqin Yang, Laiwan Chan, and Irwin King. Support Vector Machine Regres-
sion for Volatile Stock Market Prediction. In Hujun Yin, Nigel Allinson, Richard
Freeman, John Keane, and Simon Hubbard, editors, Intelligent Data Engineer-
ing and Automated Learning — IDEAL 2002, volume 2412 of LNCS, pages
391–396. Springer, 2002.


