

1.1 Learning and Statistical Estimation

- ▼ Problem of learning from data
- ▼ Goal of learning
 - predictive accuracy (generalization)
 - interpretation (explanation)
- ▼ first-principle model
 - = basic scientific model + building applications
 - -> data : verify model + estimate model parameters

- ▼ Paradigm shift classical modeling based on first-principles
 - -> developing models from data
- ▼ Learning capabilities of biological system is done in a data-driven fashion
 - 1980's neural network
 - 1990's fuzzy rules
 - -> neurofuzzy systems

- Statistical framework describe methods for learning from data
 - ▼ Statistical estimation
 - predictive learning from data
 - known samples -> properties of statistical distribution
 - ▼ Operation of learning system
 - learning/estimation
 - operation/prediction

Supervised learning estimate unknown mapping from known samples

▼ Unsupervised learning

- only input is given, no notion of output
- estimate probability distribution of input
- discover natural structure in the input data

General experimental procedures

- ▼ Statement of the Problem
 - domain-specific knowledge/experience
- ▼ Hypothesis Formulation
 - hypothesis specifies unknown dependency and is estimated from experimental data
 - close interaction between a modeler and application experts

▼ Data Collection and Preprocessing

• Outlier processing

- = detection/removal + robust modeling methods
- variable scaling/different types of encoding techniques
- selection of informative features from highdimensional data
- = feature selection
- -> making the task of estimating dependency much simpler

▼ Model Estimation

- main goal : construct models for accurate prediction of future outputs from (known) input vales
 - Goal of predictive accuracy = generalization
 - fixed parametric functions = linear in parameters
 - estimating nonlinear dependencies of an arbitrary form
- ▼ Interpretation of the Model and Drawing Conclusions
 - decision making
 - simple <-> complex dilemma
 - highly interpretable parametric models
 - high prediction accuracy + interpretation -> separate tasks

- \bullet Causality cannot be inferred from data analysis alone
 - + argument outside the statistical analysis
- ▼ Common instances of learning problem
 - Manufacturing process control
 - Person's height/weight
 - Life expectancy : place, marriage
 - Medical diagnosis

1.2 Statistical Dependency and Causality

- ▼ Statistical inference/learning system estimating unknown dependencies hidden in the data
- ▼ Statistical dependency <- unobserved factors

1.3 Characterization of Variables

- ▼ Numeric : order relation, distance relation
- ▼ Categorical : equal/unequal
- ▼ Periodic : numeric variable with distance relation
- \bullet Ordinal : categorical variable with order relation
 - closely related to linguistic or fuzzy variables
 - subjectively defined in a particular context
 - no crisp boundary
 - denote overlapping sets
 - a single (numeric) input value can belong (simultaneously)
 - to several values of an ordinal/fuzzy variable

1.4 Characterization of Uncertainty

- ▼ Describing uncertainty is based on the notion of probability and statistical distribution
- ▼ Frequentist interpretation
 - probability = relative frequency of a random experiment
 - learning = estimating parameters/structures of the unknown input-output dependency from data and a priori knowledge about the problem

Bave

Bayesian interpretation of probabilities

- see probability as a subjective degree of belief
- specifying a priori knowledge (encoded as a priori probability distribution)
- combining this knowledge with data via Bayes theorem
- Bayes formula provides a rule for updating priori probabilities after the data are known
- = Bayes inference = Bayesian inductive principle
- ▼ Fuzzy membership function
 - quantify the degree of subjective belief
 - specify the degree of partial membership

• describe randomness (uncertainty of event occurrence)

▼ Fuzziness

• describe uncertainty related to event ambiguity (subject degree to which an event occurs)

- ▼ Bayesian/Fuzzy are useful for specification of a priori knowledge about unknown system
- ▼ Both provide subjective characterization of uncertainty