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Linear Dependency Between� and the Input Noise in
�-Support Vector Regression

James T. Kwok and Ivor W. Tsang

Abstract—In using the -support vector regression ( -SVR)
algorithm, one has to decide a suitable value for the insensitivity
parameter . Smola et al. considered its “optimal” choice by
studying the statistical efficiency in a location parameter estima-
tion problem. While they successfully predicted a linear scaling
between the optimal and the noise in the data, their theoretically
optimal value does not have a close match with its experimentally
observed counterpart in the case of Gaussian noise. In this paper,
we attempt to better explain their experimental results by studying
the regression problem itself. Our resultant predicted choice of
is much closer to the experimentally observed optimal value, while
again demonstrating a linear trend with the input noise.

Index Terms—Support vector machines (SVMs), support vector
regression.

I. INTRODUCTION

I N recent years, the use of support vector machines (SVMs)
on various classification and regression problems have been

increasingly popular. SVMs are motivated by results from
statistical learning theory and, unlike other machine learning
methods, their generalization performance does not depend
on the dimensionality of the problem [3], [24]. In this paper,
we focus on regression problems and consider the-support
vector regression (-SVR) algorithm [4], [20] in particular. The
-SVR has produced the best result on a timeseries prediction

benchmark [11], as well as showing promising results in a
number of different applications [7], [12], [22].

One issue about-SVR is how to set the insensitivity param-
eter . Data-resampling techniques such as cross-validation can
be used [11], though they are usually very expensive in terms
of computation and/or data. A more efficient approach is to use
a variant of the SVR algorithm called-support vector regres-
sion ( -SVR) [17]. By using another parameterto trade off

with model complexity and training accuracy,-SVR allows
the value of to be automatically determined. Moreover, it can
be shown that represents an upper bound on the fraction of
training errors and a lower bound on the fraction of support
vectors. Thus, in situations where some prior knowledge on the
value of is available, using -SVR may be more convenient
than -SVR. Another approach is to consider the theoretically
“optimal” choice of . Smolaet al.[19] tackled this by studying
the simpler location parameter estimation problem and derived
the asymptotically optimal choice ofby maximizing statistical
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efficiency. They also showed that this optimal value scales lin-
early with the noise in the data, which is confirmed in the exper-
iment. However, in the case of Gaussian noise, their predicted
value of this optimal does not have a close match with their
experimentally observed value.

In this paper, we attempt to better explain their experimental
results. Instead of working on the location parameter estimation
problem as in [19], our analysis will be based on the original
-SVR formulation. The rest of this paper is organized as fol-

lows. Brief introduction to the-SVR is given in Section II. The
analysis of the linear dependency betweenand the input noise
level is given in Section III, while the last section gives some
concluding remarks.

II. -SVR

In this section, we introduce some basic notations for-SVR.
Interested readers are referred to [3], [20], [24] for more com-
plete reviews.

Let the training set be , with input
and output . In -SVR, is first mapped to in
a Hilbert space (with inner product ) via a nonlinear map

. This space is often called thefeature space
and its dimensionality is usually very high (sometimes infinite).
Then, a linear function is constructed in

such that it deviates least from the training data according to
Vapnik’s -insensitive loss function

if
otherwise

while at the same time is as “flat” as possible (i.e., is as
small as possible). Mathematically, this means

minimize

subject to (1)

where is a user-defined constant. It is well known that (1) can
be transformed to the following quadratic programming (QP)
problem:

maximize

(2)
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subject to

and

However, recall that the dimensionality of and thus also of
and , is usually very high. Hence, in order for this

approach to be practical, a key characteristic of-SVR and
kernel methods in general, is that one can obtain
in (2) without having to explicitly obtain and first.
This is achieved by using akernelfunction such that

(3)

For example, the -order polynomial kernel
corresponds to a map into the space spanned by

all products of exactly order of [24]. More generally, it
can be shown that any function satisfying Mercer’s theorem
can be used as kernel and each will have an associated map
such that (3) holds [24]. Computationally,-SVR (and kernel
methods in general) also has the important advantage that only
quadratic programming1 and not nonlinear optimization, is
involved. Thus, the use of kernels provides an elegant nonlinear
generalization of many existing linear algorithms [2], [3], [10],
[16].

III. L INEAR DEPENDENCY BETWEEN AND THE

INPUT NOISE PARAMETER

In order to derive a linear dependency betweenand the scale
parameter of the input noise model, Smolaet al.[19] considered
the simpler problem of estimating the univariate location param-
eter from a set of data points

Here, s are i.i.d. noise belonging to some distribution .
Using the Cramer-Rao information inequality for unbiased es-
timators, the maximum likelihood estimator ofwith an “op-
timal” value of was then obtained by maximizing its statistical
efficiency.

In this paper, instead of working on the location parameter
estimation problem, we study the regression problem of esti-
mating the (possibly multivariate) weight parametergiven a
set of , with

(4)

Here, follows distribution and follows distribu-
tion . The corresponding density function onis denoted

. Notice that the bias term has been
dropped here for simplicity and this is equivalent to assuming
that the s have zero mean. Moreover, using the notation in
Section II, in general one can replacein (4) by
in feature space and thus recovers the original-SVR setting.
Besides, while the work in [19] is based on maximum likelihood
estimation, it is now well known that-SVR is related instead to

1The SVM problem can also be formulated as a linear programming problem
[9], [18] instead of a quadratic programming problem.

maximuma posteriori(MAP) estimation. As discussed in [14],
[20], [21], the -insensitive loss function leads to the following
probability density function on

(5)

Notice that [14], [20], [21] do not have the factorin (5), but
is introduced here to play the role of controlling the noise level2

[6]. With the Gaussian prior3 on

and on applying the Bayes rule,
, we obtain

const (6)

On setting , the optimization problem in (1) can be
interpreted as finding the MAP estimate ofat given values of

and .

A. Estimating the Optimal Values ofand

In general, the MAP estimate in (6) depends on the partic-
ular training set and a closed-form solution is difficult to obtain.
To simplify the analysis, we replace in
(6) by its expectation

Equation (6) thus becomes

const (7)

On setting its partial derivative with respect toto zero, it can
be shown that has to satisfy

(8)

2To be more precise, we will show in Section III-B that the optimal value of
� is inversely proportional to the noise level of the input noise model.

3In this paper,� and� are regarded as hyperparameters while� is treated as a
constant. Thus, dependence on� will not be explicitly mentioned in the sequel.
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To find suitable values for the hyperparametersand , we use
the method of type II maximum likelihood prior4 (ML-II) in
Bayesian statistics [1]. The ML-II solutions ofand are those
that maximize , which can be obtained by integrating
out

where is the width of the integrand and
measures the posterior uncertainty of. Assuming that the con-
tributions due to are comparable at different values ofand
, maximizing with respect to and thus becomes

maximizing . This is the same as maximizing
, or approximately. Differentiating

(7) with respect to and and then using (8), we have

(9)

and

(10)

respectively. Setting (9) and (10) to zero, we obtain

(11)

4Notice that MacKay’s evidence framework [8], which has been popularly
used in the neural networks community, is computationally equivalent to the
ML-II method.

and

(12)

These can then be used to solve forand .

B. Applications to Some Common Noise Models

Recall that the -insensitive loss function implicitly corre-
sponds to the noise model in (5). Of course, in cases where the
underlying noise model of a particular data set is known, the
loss function should be chosen such that it has a close match
with this known noise model, while at the same time ensuring
that the resultant optimization problem can still be solved ef-
ficiently. It is thus possible that the-insensitive loss function
may not be best. For example, when the noise model is known
to be Gaussian, the corresponding loss function is the squared
loss function and the resultant model becomes a regularization
network [5], [13].5 However, an important advantage of-SVR
using the -insensitive loss function, just like SVMs using the
hinge loss in classification problems, is that sparseness of the
dual variables can be ensured. On the contrary, sparseness will
be lost if the squared loss function is used instead. Thus, even for
Gaussian noise, the-insensitive loss function is sometimes still
desirable and the resultant performance is often very competi-
tive. In this section, by solving (11) and (12), we will show that
there is always a linear relationship between the optimal value
of and the noise level, even when the true noise model is dif-
ferent from (5). As in [19], three commonly used noise models,
namely the Gaussian, Laplacian, and uniform models, will be
studied.

1) Gaussian Noise:For the Gaussian noise model

where is the standard deviation. Define
and

. It can be shown that (11) and (12)
reduce to

erfc erfc
(13)

and

erfc erfc

(14)

where erfc is the complementary
error function [15]. Substituting (13) into (14) and after per-
forming the integration,6 it can be shown thatalways appears
as the factor in the solution and, thus, there is always a linear
relationship between the optimal values ofand .

5This is sometimes also called the least-squares SVM [23] in the SVM liter-
ature.

6Here, the integration is performed by using the symbolic math toolbox of
Matlab.
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Fig. 1. Objective functionh(�=�) to be minimized in the case of Gaussian noise.

If we assume that

(15)

and also that the variation of with is small,7 then maximizing
in (7) is effectively the same as minimizing

, which is the same as minimizing8

erfc

erfc

(16)

7Notice that from (8), we have

@ŵ

@�
=

�

�N
I+ xx p ŵ x� �jx

+ p ŵ x+ �jx p(x)dx

� x p ŵ x � �jx

�p ŵ x+ �jx p(x)dx

whereI is the identity matrix.@ŵ=@� thus involves the difference of two very
similar terms and will be small.

8More detailed derivations are in the Appendix.

A plot of is shown in Fig. 1. Its minimum can be obtained
numerically as

(17)

By substituting (15), (17) into (29), we can also obtain the
optimal value of as . This confirms the role of

in controlling the noise variance, as mentioned in Section III.
In the following, we repeat an experiment in [19] to verify

this ratio of . The target function to be learned is
sinc . The training set consists of 200s drawn inde-

pendently from a uniform distribution on [1, 1] and the corre-
sponding outputs have Gaussian noise added. Testing
error is obtained by directly integrating the squared difference
between the true target function and the estimated function over
the range [ 1, 1]. As in [19], the model selection problem for
the regularization parameter in (1) is side-stepped by always
choosing the value of that yields the smallest testing error.
The whole experiment is repeated 40 times and the spline kernel
with an infinite number of knots is used.

Fig. 2 shows the linear relationship of obtained
from the experiment. This is close to the value of
obtained in the experiment in [19] and is also in good agreement
with our predicted ratio of . In comparison, the
theoretical results in [19] suggest the “optimal” choice of

.
2) Laplacian Noise:Next, we consider the Laplacian noise

model

Here, we only consider the simpler case whenis one-dimen-
sional, with uniform density over the range [ , ] (i.e.,
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Fig. 2. Relationship between the optimal value of� and the Gaussian noise level�.

Fig. 3. Objective functionh(�=�) to be minimized in the case of Laplacian noise.

). After tedious computation, it can be shown that
(11) and (12) reduce to

(18)

and

(19)
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(a)

(b)

Fig. 4. Relationship between the optimal value of� and the Laplacian noise level�. (a) One-dimensionalx: (b) Two-dimensionalx:

Substituting (19) back into (18), we notice again thatalways
appears in the factor and thus there is always a linear rela-
tionship between the optimal value ofand under the Lapla-
cian noise. Recall that the variance for the uniform distribution

is and that for the exponential distribution9

9The density function of the exponential distribution� � Expon(�) is
p(�) = � exp(���) (where� > 0; � � 0).

is . As in Section III-B1, we consider
and assume that

. With , we also obtain .
Consequently

(20)
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Fig. 5. Scenario whenL > � + �= ~w � ŵ in the case of uniform noise.

and hence

(21)

Analogous to Section III-B1, by plugging in (18), (19), and (21),
it can be shown that the problem reduces to minimizing (Fig. 3)
as shown in the equation at the bottom of the page. Again, the
solution can be obtained numerically as , which was also
obtained in [19]. Notice that this is intuitively correct as the den-
sity function in (5) degenerates to the Laplacian density when

. Moreover, we can also obtain the optimal value ofas
, again showing that is inversely proportional

to the noise level of the Laplacian noise model.
To verify the ratio of , we repeat the experiment in Sec-

tion III-B1 but with the Laplacian noise instead. More-
over, as our analysis applies only whenis one dimensional,
we also investigate experimentally the optimal value ofin the
two-dimensional case. The ratios obtained for the one- and two-
dimensional cases are and , respec-
tively (Fig. 4), which are close to our prediction of .

3) Uniform Noise: Finally, we consider the uniform noise
model

(22)

where
if
otherwise.

is the indicator function.

Again, we only consider the simpler case whenis one-dimen-

sional, with uniform density over the range [ , ]. Moreover,
only the case when
will be discussed here. Derivation for the case when

is similar. Whereas, for
(i.e., ), the corresponding SVR solution will
be very poor (Fig. 5) and thus usually not the case of interest.

It can be shown that (11) and (12) reduce to

and

(23)

Combining and simplifying, we have
. Substituting back into (23), we

obtain

(24)

Again, we notice that always appears in the factor and,
thus, there is also a linear relationship between the optimal value
of and in the case of uniform noise.

As in Section III-BI, consider and assume
that . Using (20) again,
we obtain . On substituting back into (24) and
proceed as in Section III-BI, we obtain, after tedious computa-
tion, . This is intuitively correct since the density function
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(a)

(b)

Fig. 6. Relationship between the optimal value of� and the uniform noise level�. (a) One-dimensionalx: (b) Two-dimensionalx:

in (5) becomes effectively the same as (22) when , as noise
with magnitude larger than the size of the-tube then becomes
impossible. Moreover, as a side-product, we can also obtain the
optimal value of as , showing that is again in-
versely proportional to .

Fig. 6 shows the linear relationships obtained from the exper-
iment, with and for the one- and

two-dimensional cases, respectively. These are again in close
match with our prediction of .

IV. CONCLUSION

In this paper, we study the-SVR problem and derive the
optimal choice of at a given value of the input noise parameter.
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While the results in [19] considered only the problem of location
parameter estimation using maximum likelihood, our analysis
is based on the original-SVR formulation and corresponds to
MAP estimation. Consequently, our predicted ratio of in
the case of Gaussian noise is much closer to the experimentally
observed optimal value. Besides, we accord with [19] in that

scales linearly with the scale parameter under the Gaussian,
Laplacian, and uniform noise models.

In order to apply these linear dependency results in practical
applications, one has to first arrive at an estimate of the noise
level . One way to obtain this is by using Bayesian methods
(e.g., [6]). In the future, we will investigate the integration of
these two and also its applications in some real-world prob-
lems. Besides, the work here is also useful in designing sim-
ulation experiments. Typically, a researcher/practitioner may be
experimenting a new technique on-SVR, while not directly ad-
dressing the issue of finding the optimal value of. The results
here can then be used to ascertain that a suitable value/range of

has been chosen in the simulation. Finally, our analyses under
the Laplacian and uniform noise models are restricted to the case
when the input is one dimensional and with uniform density
over a certain range. Extensions to the multivariate case and to
other noise models will also be investigated in the future.

APPENDIX

Recall the following notations introduced in Section III-B1:

In the following, we will use the second-order Taylor series ex-
pansions for erfc and

erfc erfc

(25)

(26)

Using (25), (13) then becomes

erfc erfc

erfc

erfc

(27)

Similarly, using (26), (14) becomes

erfc erfc

erfc erfc

erfc erfc

Using (13) and (25), this simplifies to (28), shown at the bottom
of the page, from which we obtain

(29)

Substituting (27) into (28) and simplifying, we have

erfc

(30)

(28)



KWOK AND TSANG: LINEAR DEPENDENCY 553

Now, maximizing in (7) is thus the same as minimiz-
ing . Substituting in
(15), (27), (29), and (30), this becomes minimizing
in (16).
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