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Linear Dependency Betweerand the Input Noise Iin
e-Support Vector Regression

James T. Kwok and Ivor W. Tsang

Abstract—in using the e-support vector regression €-SVR)  efficiency. They also showed that this optimal value scales lin-
algorithm, one has to decide a suitable value for the insensitivity early with the noise in the data, which is confirmed in the exper-
parameter e. Smola et al. considered its “optimal” choice by nant However, in the case of Gaussian noise, their predicted

studying the statistical efficiency in a location parameter estima- . . . .
tion problem. While they successfully predicted a linear scaling value of this optimat does not have a close match with their

between the optimale and the noise in the data, their theoretically €xperimentally observed value.

optimal value does not have a close match with its experimentally  In this paper, we attempt to better explain their experimental
observed counterpart in the case of Gaussian noise. In this paper, results. Instead of working on the location parameter estimation
we attempt to better explain their experimental results by studying  opjem as in [19], our analysis will be based on the original
the regression problem itself. Our resultant predicted choice ot . . . .

is much closer to the experimentally observed optimal value, while e-SVR ermU|at'0n- The rest of thlS_ paper is Orgahlzed as fol-
again demonstrating a linear trend with the input noise. lows. Brief introduction to the-SVR is given in Section II. The
analysis of the linear dependency betweamd the input noise
level is given in Section Ill, while the last section gives some

concluding remarks.

Index Terms—Support vector machines (SVMSs), support vector
regression.

. INTRODUCTION Il. e-SVR

N recent years, the use of support vector machines (SVMs)|n this section, we introduce some basic notations {8VR.

on various classification and regression problems have bagerested readers are referred to [3], [20], [24] for more com-
increasingly popular. SVMs are motivated by results fromjete reviews.
statistical learning theory and, unlike other machine learning| et the training seD be {(x;, %)}, with inputx; € %"
methods, their generalization performance does not depefifli outputy;, € R. In e-SVR, x is first mapped t@ = ¢ (x) in
on the dimensionality of the problem [3], [24]. In this papera Hilbert spaceF (with inner product-, -)) via a nonlinear map
we focus on regression problems and consideretsapport 4 . gn — F. This spaceF is often called thdeature space
vector regression{SVR) algorithm [4], [20] in particular. The and its dimensionality is usually very high (sometimes infinite).
e-SVR has produced the best result on a timeseries predictipen, a linear functiorf (x) = (w, ¢ (x)) + b is constructed in
benchmark [11], as well as showing promising results in & gych that it deviates least from the training data according to
number of different applications [7], [12], [22]. Vapnik's e-insensitive loss function

One issue aboutSVR is how to set the insensitivity param- _
etere. Data-resampling techniques such as cross-validation can ly — f(x)]. = { 0, if |y — f(X)| <e
be used [11], though they are usually very expensive in terms ‘ ly = f(x)| — ¢, otherwise
of computation and/or data. A more efficient approach is to US®,
a variant of the SVR algorithm calledsupport vector regres-
sion (-SVR) [17]. By using another parameterto trade off

ile at the same time is as “flat” as possible (iles|| is as
small as possible). Mathematically, this means

e with model complexity and training accuraeySVR allows 1 N

the value of to be automatically determined. Moreover, it can miﬂifT\iZ(9§||W||2 +CY (&G +E)

be shown that, represents an upper bound on the fraction of i=1

training errors and a lower bound on the fraction of support yi— f(xi) < e+ &

vectors. Thus, in situations where some prior knowledge onthe ~ subjectt f(x;) —y; <e+¢f, i=1,...,N (1)
value ofv is available, using’~-SVR may be more convenient & & >0

thane-SVR. Another approach is to consider the theoreticall\x
“optimal” choice ofe. Smolaet al.[19] tackled this by studying b
the simpler location parameter estimation problem and derive

hereC is a user-defined constant. It is well known that (1) can
g transformed to the following quadratic programming (QP)

the asymptotically optimal choice eby maximizing statistical problem:
N
L 1
o . maximize — = >~ (vi —7) (v — 7}) (¥ (x:) , 9 (%))
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subject to maximuma posteriori(MAP) estimation. As discussed in [14],
[20], [21], thee-insensitive loss function leads to the following

XN:( ) =0 and e [0,C] probability density function ony
Yi — )= Yis Vi P .
= p(yilxi, w,B,¢) = 2(%:@ €xp (—ﬂlw - WTXi|f) . (5

However, recall that the dimensionality 6f and thus also of
¥(x:) andyy(x;), is usually very high. Hence, in order for thisNotice that [14], [20], [21] do not have the fact6rin (5), but
approach to be practical, a key characteristicc®VR and s introduced here to play the role of controlling the noise kevel
kernel methods in general, is that one can obeifx;), v (x;))  [6]. With the Gaussian priéron w
in (2) without having to explicitly obtain(x;) andi)(x; ) first.
This is achieved by usinglkernelfunction K (-, -) such that _ | o 2

plwlo) = [ 2 exp (~ 3 w?)

K (i xj) = (0 (), 9 (x5 ®) and on applying the Bayes rulep(w|D,f,¢)
For example, thed-order polynomial kernelK (x;,x;) = p(D|w.f,€)p(w), we obtain
(xFx;)? corresponds to a map into the space spanned by N
all products of exactlyl order _oféR [2_4]..More gene,rally, it log p(w|D, B, ¢) = —g||W||2 _ ﬂz |yL _ WTXiIE
can be shown that any function satisfying Mercer’s theorem 2 e
can be used as kernel and each will have an associated)map B
such that (3) holds [24]. ComputationalltSVR (and kernel +N log 20 +h) + const  (6)
methods in general) also has the important advantage that only
quadratic programmirig and not nonlinear optimization, isOn settingC' = (/«, the optimization problem in (1) can be
involved. Thus, the use of kernels provides an elegant nonlinéaterpreted as finding the MAP estimatewfat given values of
generalization of many existing linear algorithms [2], [3], [10]3 ande.

[16].
A. Estimating the Optimal Values gfande
[ll. LINEAR DEPENDENCY BETWEEN € AND THE In general, the MAP estimatg in (6) depends on the partic-
INPUT NOISE PARAMETER ular training set and a closed-form solution is difficult to obtain.

. . . N T .

In order to derive a linear dependency betweand the scale 10 Simplify the analysis, we repladgN 3_;_, |y; —w" xile in
parameter of the input noise model, Smelal.[19] considered (6) bY its expectation

the simpler problem of estimating the univariate location param- T )

eterw from a set of data points Exy (|y W
= /Q/ |y — wa|Ep(y|x)p(x)dde

y=w+mn, t=1,...,N.

Here,n;s are i.i.d. noise belonging to some distributiof). = / ( / (wi'x — e —y) p(y|x)dy

Using the Cramer-Rao information inequality for unbiased es- SN\ S —oo

timators, the maximum likelihood estimator @fwith an “op- oo T’

timal” value ofe was then obtained by maximizing its statistical + / . (y —w X- 6) P(y|x)dy) - p(x)dx.
efficiency. Twxcte

In this paper, instead of working on the location parametgfyuation (6) thus becomes
estimation problem, we study the regression problem of esti-
mating the (possibly multivariate) weight paramedegiven a M (w, 3, ¢) = _g||w||2 — BNExy (ly — w'x])
setD of {(x;, i)}, with 2 p
+N log ——— +const  (7)
On setting its partial derivative with respectwoto zero, it can

Here,x; € ( follows distributionp(-) andx; follows distribu- be shown thati has to satisfy

tion ¢(-). The corresponding density function gris denoted

p(y|x) = ¢(y — wTx). Notice that the bias term has been wTlx—e
dropped here for simplicity and this is equivalent to assumingv + SN [ x / p(y|x)dy
that thex;s have zero mean. Moreover, using the notation in LN

Section Il, in general one can replacgin (4) by z; = ¥ (x;) oo
in feature spacé and thus recovers the originaSVR setting. - /
Besides, while the work in [19] is based on maximum likelihood

estimation, itis now well known thatSVR is related instead to  2To be more precise, we will show in Section I1I-B that the optimal value of
3 is inversely proportional to the noise level of the input noise model.

1The SVM problem can also be formulated as a linear programming problem?In this paper? ande are regarded as hyperparameters whils treated as a
[9], [18] instead of a quadratic programming problem. constant. Thus, dependencewwill not be explicitly mentioned in the sequel.

p(:l/lX)dy)p(X)dX =0. (8)

wTlzte
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To find suitable values for the hyperparametémnde, we use and
the method of type Il maximum likelihood prior(ML-II) in 1 _ - T

X . . =Exy ( ). (12)
Bayesian statistics [1]. The ML-II solutions gfande are those B(1+ €ef) €

that maximizep(D|(, €), which can be obtained by integratin
out w gThese can then be used to solve foande.

p(D|B,¢) = /p(w DB, )dw B. Applications to Some Common Noise Models

Recall that thes-insensitive loss function implicitly corre-

- /p(D|w7/37 )p(w)dw sponds to the noise model in (5). Of course, in cases where the
. R underlying noise model of a particular data set is known, the
~p (D|W, B, ¢)p (W) Aw loss function should be chosen such that it has a close match

whereAw is the width of the integrang(D|w, 3, e)p(w) and with this known noise m_odt_el, while at the same time ensuring
. : ! that the resultant optimization problem can still be solved ef-
measures the posterior uncertaintyafAssuming that the con-

tributions due taAw are comparable at different valuesband ficiently. It is thus possible that thelnsensm\_/e loss fun.ctlon
L . may not be best. For example, when the noise model is known
€, maximizingp(D| S, €) with respect tq3 ande thus becomes

S . . g ..~ to be Gaussian, the corresponding loss function is the squared
maximizingp(D|w, 3, €)p(W). This is the same as maximizing . o
1 . A : . ... “~loss function and the resultant model becomes a regularization
ogp(W|D, B, ¢), or M (W, 3, €) approximately. Differentiating . .
(7) with respect te& andg and then using (8), we have ne_twork [5].’ [13]; _I-_|owever, an |r_np0r_tant gdvantagee(-)sVR
' using thee-insensitive loss function, just like SVMs using the
OM (W, 3, ¢) whx—e hinge loss in classification problems, is that sparseness of the
e aw + Nf / / p(y[x) dual variables can be ensured. On the contrary, sparseness will
be lost if the squared loss function is used instead. Thus, even for
o0 T oW Gaussian noise, theinsensitive loss function is sometimes still
—/ (ylx)dy | p(x)dx e desirable and the resultant performance is often very competi-
xte tive. In this section, by solving (11) and (12), we will show that
Ng W there is always a linear relationship between the optimal value
‘ 5+ Ng / ( / P(ylx)dy 4 P P

14e¢ of e and the noise level, even when the true noise model is dif-
- ferent from (5). As in [19], three commonly used noise models,
+/ p(y|x)dy | p(x)dx namely the Gaussian, Laplacian, and uniform models, will be
studied.

wT x—e 1) Gaussian NoiseFor the Gaussian noise model
gt [ ([ sy
1+e8 Py 1 < n? )
Xp

¢(n) = 552

- \2ro

wT xte

+/vax+f (y|x)dy) ()dx(9) where o is the standard deviation. Definé(x) =
and (W = %)"x,bi(x) = 1/V2(c/o — 6(x)/0) andby(x) =
1/v2(¢/o + §(x)/o). It can be shown that (11) and (12)

(;;36 9 ( +Nﬂ/ </w a p(ylx)dy reduce to

1 erfc(by) + erfc(b
/ p(ylx)dy | p(x)d Cow 1+6ﬂ:/g (1)2 i (13)
— X X )ax - -
wTx+e Py v)p aﬂ and
N a1 ;:/< Ublerfcb 2erfcb
Paren Vo (= ix) BT o \Tyaeret et
N g 2
- _NE —wT + —exp (=b3) + — eX) —b )
respectively. Setting (9) and (10) to zero, we obtain p(x)dx (14)
1 wlx—e
5 s / </ p(y|x)dy where erf¢z) = 2/\/7 [ exp(—t?)dt is the complementary
e R error function [15]. Substituting (13) into (14) and after per-
+ / p(y|x)dy>p(x)dx forming the integration,it can be shown that always appears
JWTx+e as the factoe/o in the solution and, thus, there is always a linear

:// p(x,y)dydx (11) relationship between the optimal valuescafndo.
y&§ [WTx—e,WwT x+e] /

5This is sometimes also called the least-squares SVM [23] in the SVM liter-
4Notice that MacKay's evidence framework [8], which has been populargture.
used in the neural networks community, is computationally equivalent to the®Here, the integration is performed by using the symbolic math toolbox of
ML-II method. Matlab.
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Fig. 1. Objective functiork(e/o) to be minimized in the case of Gaussian noise.

If we assume that Aplotof h(e/o) is showninFig. 1. Its minimum can be obtained

Ex (52(X)) — /Q 52(X)p(x)dx numerically as

=Fx ((WTX — V~VTX)2)

¢ = 1.00430. (17)

2 By substituting (15), (17) into (29), we can also obtain the
~Ex ((y - W'x) ) optimal value of3 as1/3 = 0.9658¢. This confirms the role of
=02 (15) Ain controlling the noise variance, as mentioned in Section I1l.

o o o In the following, we repeat an experiment in [19] to verify
and also that the variation éf with ¢ is smally then maximizing - thjs ratio ofe/o. The target function to be learned ji§z) =

M in (7) is effectively the same as minimizing=xy (ly —  0.9sing(10x /7). The training set consists of 268 drawn inde-
wx|c)—log (B/2(1 + ¢3)), which is the same as minimizihg pendently from a uniform distribution or-L, 1] and the corre-
c €2 N2 -1 sponding outputs have Gaussian nd\&@), o) added. Testing
h (;) =27 exp <ﬁ) ((;) + 3) error is obtained by directly integrating the squared difference
) between the true target function and the estimated function over
< erﬂ;( > i exp <_€_>> the range £1, 1]. As in [19], the model selection problem for
V20 Ver 207 the regularization parametérin (1) is side-stepped by always
€ €2 -1 choosing the value of' that yields the smallest testing error.
— log (mexl’ <F) ((;) + 3) ) The whole experiment is repeated 40 times and the spline kernel

) with an infinite number of knots is used.
—log (erfc< > = _exp <_€_>> ) Fig. 2 shows the linear relationship o= 0.98460 obtained
V2o 2o 202 from the experiment. This is close to the valueco= 0.90
(16) obtained in the experimentin [19] and is also in good agreement
with our predicted ratio of = 1.0043c. In comparison, the

“Notice that from (8), we have ) . . >
® theoretical results in [19] suggest the “optimal” choicesof

> - (%I + / xx (p (W x — e|x) 0.61660.
‘ o . . 2) Laplacian Noise: Next, we consider the Laplacian noise
+ p(w x4+ €|x)) p(x)dx) model
. /Qx (p(W"x — €|x) 1 |77|
(x4 o) )i o) = oo (1),

wherel is the identity matrixdw /de thus involves the difference of two very . . . .
similar terms and will be small. Here, we only consider the simpler case wikeis one-dimen-

8More detailed derivations are in the Appendix. sional, with uniform density over the range [, L] (i.e., X ~
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Fig. 2. Relationship between the optimal value@nd the Gaussian noise level
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Fig. 3. Objective functiork(e/ o) to be minimized in the case of Laplacian noise.
U([-L, L])). After tedious computation, it can be shown that and
(11) and (12) reduce to 1 o N o
/B_L(TI)—’lZ}) 2L (w — )
1 1 € n o exco [ — L(w — o)
1+e¢f  L(w—w)  2L(0— ) 1 o
S €
- exp <_M> ((e—a)exp (;) —(e+o)exp (——))
o
€ € (0 — )L €2
. —) = —— + - —. 19
(exp (0) xp ( 0)) (18) 2 2L (b — ) (19)
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Fig. 4. Relationship between the optimal value:@ind the Laplacian noise level (a) One-dimensionat. (b) Two-dimensionak:.

Substituting (19) back into (18), we notice again thaiways FEzpon(3) is 1/32. As in Section 11I-B1, we considef(z) =
appears in the facter/o and thus there is always a linear relafw — )z and assume thdtx (6?(z)) ~ Ex((y — wx)?) =
tionship between the optimal value o&ndo under the Lapla- 202, With X ~ U([—L, L]), we also obtaimvar(X) = L?/3.
cian noise. Recall that the variance for the uniform distributicBonsequently

Ul(a,b) is (b—a)?/12 and that for the exponential distribution

- A\2
9The density function of the exponential distributién ~ Exporn(3) is L? (w - w)

p(d) = Bexp(—436) (whered > 0,6 > 0). FEx (62(:1:)) ~ var ((

£,
|

gj

s’
1R

(20)



550 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Ly
y . . . .
6O ) variation due to uniform noise
R
e |,
o A
) S T y=wx
‘e L) /, Pt g
e 8
) Pt €—tube
s ;
o1 e :
o L x
. :
Fig. 5. Scenario whell > o + €/w — & in the case of uniform noise.
and hence sional, with uniform density over the range L, L]. Moreover,
L (% — ) only the case whefr —¢)/(w — @) < L < (o +¢€)/(w — )
=T (21) will be discussed here. Derivation for the case wHen<

(0 —€)/(w — w) is similar. Whereas, fol. > o+ ¢/w — W
Analogous to Section IlI-B1, by plugging in (18), (19), and (21)i.e.,wL — o > WL + ¢), the corresponding SVR solution will
it can be shown that the problem reduces to minimizing (Fig. B very poor (Fig. 5) and thus usually not the case of interest.
as shown in the equation at the bottom of the page. Again, thet can be shown that (11) and (12) reduce to
solution can be obtained numericallyas- 0, which was also

obtained in [19]. Notice that this is intuitively correct as the den- 1 — ((0 =€) + (0 — ) L)2

sity function in (5) degenerates to the Laplacian density when 1+ ¢ef 4o (w — ) L

e = 0. Moreover, we can also obtain the optimal valugiads and

1/3 = 1.5977¢, again showing that is inversely proportional 1 (=) L+ (0 —¢)® (23)
to the noise level of the Laplacian noise model. B(1+eB) 120 (0 — W) L '

_ To verify the ratlo ofe/ao, we repe_at the ex_penment in Secbombining and simplifying, we have 1/3 _
tion 111-B1 but with the Laplacian nois&(0, o) instead. More- .~ . - :
. . . . . ((w —w)L + (6 — €))/3. Substituting back into (23), we
over, as our analysis applies only wherns one dimensional, .
. . . . . obtain
we also investigate experimentally the optimal value wf the
tvyo—dimensional case. The ratios obtained for the one- and twoﬁ (@ — ) <2 € (% — ) £> 1o (5)2_,_5. (24)
dimensional cases ate= 0.05650 ande = 0.05590, respec- o o o o o
tively (Fig. 4), which are close to our prediction of= 0.

: ) ; Again, we notice that always appears in the factefo and,
3) Uniform Noise: Finally,

we consider the uniform NOIS€hus, there is also a linear relationship between the optimal value

model of e ando in the case of uniform noise.
d(n) = %[[_M] (n) (22) As in Section Il1-BlI, consigeﬁ(:n) = (w— u”z)a: and assume
o that Ex (6%(z)) ~ Ex((y — wx)?) = 0%/3. Using (20) again,
i we obtainc = L(w — w). On substituting back into (24) and
where I4(n) = L, iffneA is the indicator function. ’ (0 - @) g (24)

0, otherwise. proceed as in Section I1I-Bl, we obtain, after tedious computa-
Again, we only consider the simpler case wheis one-dimen- tion, e = ¢. This is intuitively correct since the density function

>
N
0
N—

Il
[~ |
+ +
2 |5
-
S

5 +
exp (—v6 € € € € V6 €\2
o (s P () (6) - (o) () + - 555 )
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Fig. 6. Relationship between the optimal value: @nd the uniform noise level. (a) One-dimensionat. (b) Two-dimensionak:.

in (5) becomes effectively the same as (22) wheno, as noise two-dimensional cases, respectively. These are again in close
with magnitude larger than the size of théube then becomes match with our prediction of = o.
impossible. Moreover, as a side-product, we can also obtain the
optimal value ofg as1/3 = /3, showing tha{s is again in-
versely proportional t@.

Fig. 6 shows the linear relationships obtained from the exper-In this paper, we study the SVR problem and derive the
iment, withe = 0.96460 ande = 0.92750 for the one- and optimal choice ot at a given value of the input noise parameter.

IV. CONCLUSION
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While the results in [19] considered only the problem of locatiodsing (25), (13) then becomes

parameter estimation using maximum likelihood, our analysis

is based on the originatSVR formulation and corresponds to L :/ erfc(by) + erfc(bg)p(x)dx

MAP estimation. Consequently, our predicted ratiocpf in L+ef  Jo 2

the case of Gaussian noise is much closer to the experimentally . 2 ¢
/, (erc<fa> T Vo

observed optimal value. Besides, we accord with [19] in that =
; ; ; 2
Laplacian, and uniform noise models. _ (exp <_€_>> 6 (X)>p(x)dx

e scales linearly with the scale parameter under the Gaussian,
In order to apply these linear dependency results in practical 202 202
applications, one has to first arrive at an estimate of the noise

2
level 0. One way to obtain this is by using Bayesian methods _erfc< ) + — exp <—6—2>
(e.g., [6]). In the future, we will investigate the integration of V20 V2mos 20
these two and also its applications in some real-world prob- -Ex (6*(x)) . (27)
lems. Besides, the work here is also useful in designing sim-
ulation experiments. Typically, a researcher/practitioner may §&nilarly, using (26), (14) becomes
experimenting a new technigue ei$VR, while not directly ad-
dressing the issue of finding the optimal value:oThe results 1 / _ob “Lerfc(by) — 2erfc(b2)
here can then be used to ascertain that a suitable value/ranﬁé]ofr ) Q V2 V2

€ has been chosen in the simulation. Finally, our analyses under o
the Laplacian and uniform noise models are restricted to the case + ——exp (—b7) + exp (—b3) )p(x)dx
when the inpui is one dimensional and with uniform density Var ‘/_

over a certain range. Extensions to the multivariate case and to
other noise models will also be investigated in the future.

<erfc (b1) + erfc(by )>

APPENDIX + (S(TX (erfc(by) — erfc(ba))
Recall the following notations introduced in Section IlI-B1: o €2
+ ——2exp| ——
V2T ( 202)
§(x)=(w-—w)"x 2 §2(x
1 (e 6(x) . <1 + <—2 - 1> 2(2)> p(x)dx.
h(x)=—4=|—-——-—], g g
V2 \o o
b 1 (e (%) Using (13) and (25), this simplifies to (28), shown at the bottom
2(x) V2 \o a ) of the page, from which we obtain
In the following, we will use the second-order Taylor series ex- 3 = \/7 < 2) 5 = 20 5 . (29)
pansions for erfer) andexp(—2) 20%) 20% + (& +1) Ex (8%(x))

) ) Substituting (27) into (28) and simplifying, we have
erfo(x + h) =erfc(z) — e h 4 ——ze 2

ﬁ \/7_1' (ly = wTx| ) = —¢ <
o) gy P (=% = ~cere( £ ) #60)
exp (—(z + h)?) =exp (—2?) (1 — 2zh + (22* — 1) h?) zex _i " Ex (6%(x)
+0(h?). (26) +\/; p< 202>( T ) (20)
. 1
xv(p—wxl) B(1 + )

- (-52) (=
e (o) (4 o (G 1) B () 28)
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Now, maximizing M in (7) is thus the same as minimiz-
ing BExy(ly — wTx|.) — log 3/2(1 + ¢3). Substituting in
(15), (27), (29), and (30), this becomes minimizihge/o)
in (16). O
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