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Abstract. The purpose of the paper is to apply a nonlinear programming

algorithm for computing kernel and related parameters of a support vector
machine (SVM) by a two-level approach. Available training data are split
into two groups, one set for formulating a quadratic SVM with L2-soft margin

and another one for minimizing the generalization error, where the optimal
SVM variables are inserted. Subsequently, the total generalization error is

evaluated for a separate set of test data. Derivatives of functions by which

the optimization problem is defined, are evaluated in an analytical way, where
an existing Cholesky decomposition needed for solving the quadratic SVM, is

exploited. The approach is implemented and tested on a couple of standard
data sets with up to 4,800 patterns. The results show a significant reduction

of the generalization error, an increase of the margin, and a reduction of the

number of support vectors in all cases where the data sets are sufficiently large.
By a second set of test runs, kernel parameters are assigned to individual

features. Redundant attributes are identified and suitable relative weighting

factors are computed.

1. Introduction. During the last ten years, support vector machines (SVM) be-
came an important alternative to neural networks for machine learning. Meanwhile
there is a large number of applications, see e.g.

http://www.kernel-machines.org/

Especially from the viewpoint of mathematical programming, SVMs are extremely
interesting and touch a large variety of important topics, for example duality theory,
convex optimization, large scale linear and quadratic optimization, semi-definite op-
timization, least squares optimization, L1-optimization, and interior point methods.
In a series of papers, Mangasarian and co-workers investigate support vector ma-
chines from the viewpoint of mathematical programming, see Bradley et al. [3], Fung
and Mangasarian [9], Mangasarian and Musicant [11], and Mangasarian [12, 13].

As shown below in more detail, a support vector machine is identified by a kernel
function to determine a certain similarity measure, a method compute a classifica-
tion error, and an approach to handle outliers. Although being a well established
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technique, it is still difficult to find a suitable kernel function and especially to
predetermine numerical parameter values in a specific situation. An alternative
to statistical methods is to be presented in this paper based on a mathematical
optimization model.

We proceed from a set of n training data (xi, yi), i = 1, . . ., n, where xi ∈ IRm

represent certain patterns with m attributes, and yi ∈ {−1, 1} are labels. Only
binary classification of the data x1, . . ., xn is considered, i.e., we are looking for a
separating hyperplane

h(x) := wT x− γ (1)

where w ∈ IRm and γ ∈ IR are chosen to maximize the margin between positively
and negatively labelled data points by taking outliers into account. The resulting
optimization problem is a quadratic program of the form

w ∈ IRm, γ ∈ IR, z ∈ IRn :
min wT w + 1

ν zT z
Y (XT w − γe) > e− z,
z > 0,

(2)

where X = (x1, . . . , xn), Y a diagonal matrix containing the labels y1, . . ., yn,
and where e = (1, . . . , 1)T . z is a vector of slack variables introduced for the case
that the data are not completely separable, also called the soft margin. To reduce
the influence of the slack variables as much as possible related to the overall goal
to maximize the margin, a weight ν > 0 is introduced. If z = 0, the data are
strictly separable and the objective function is identical to wT w, by which the
margin is maximized, see Christianini and Shawe-Taylor [6] or Shawe-Taylor and
Christianini [18] for more details.

It is easy to see that the dual program of (2) is given by

α ∈ IRn :
min 1

2 αT (Y XT XY + νI)α− eT α
yT α = 0,
α > 0.

(3)

Here, I denotes the n by n unit matrix and y := (y1, . . . , yn)T is a vector containing
the labels. The advantage is that the slack variables of the primal formulation with
a soft margin vanish completely. α denotes the dual variables and the bias γ is the
multiplier of the equality constraint in (3) as will be discussed later in more detail.

The next step is to consider the matrix XT X with coefficients xT
i xj , i, j = 1, . . .,

n. To allow a more flexible nonlinear separation, IRm is mapped into the so-called
feature space F by a function φ : IRm → F . F is a generally unknown Hilbert space
with inner product 〈., .〉. The idea is to separate the data linearly in the feature
space F , as outlined above. The only change of (3) consists of replacing the inner
products xT

i xj by their mapped inner products 〈φ(xi), φ(xj)〉, i, j = 1, . . ., n. Since,
however, F is unknown, so-called kernel trick consists of defining a function

k(x, x, p) := 〈φ(x), φ(x)〉 (4)

and to replace xT
i xj in (3) by k(xi, xj , p), where k(x, x, p) is a suitable kernel func-

tion depending on two given data vectors x, x ∈ IRm, by which a certain distance
or similarity between x and x is to be measured. Moreover, the kernel function
depends on a parameter vector p ∈ IRnp .

A typical and widely used kernel function is the Gaussian or RBF kernel

k(x, x, p) = exp(−p‖x− x‖2), (5)
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where the distance is measured in the L2-norm. In this case, we have np = 1. Under
certain assumptions on k(x, x, p), the existence of a feature mapping φ satisfying
(4) can be shown, see Christianini and Shawe-Taylor [6].

For any two data sets {x1, . . . , xn} and {x1, . . . , xn}, we denote by X and X the
corresponding matrices X = (x1, . . . , xn) and X = (x1, . . . , xn). The kernel matrix
of the two data sets is then defined by

K(X, X, p) =
(
k(xi, xj , p)

)
i=1,n,j=1,n

. (6)

Note that K(X, X, p) is an n by n matrix depending on a parameter vector p ∈ IRnp .
In case of X = X, we also assume throughout this paper that K(X, X, p) ∈ IRn×n

is positive definite for all p ∈ IRnp .
Thus, we finally obtain the standard quadratic programming support vector ma-

chine with L2-soft margin

α ∈ IRn :
min 1

2 αT (Y K(X, X, p)Y + νI)α− eT α

yT α = 0
α > 0.

(7)

¿From a solution α(p, ν) ∈ IRn of (7) depending on the parameter vector p and the
weight ν, we immediately get the so-called geometric margin µ of the separating
hyperplane in the feature space,

µ =
(
eT α(p, ν)− να(p, ν)T

α(p, ν)
)−1/2

. (8)

Note that the margin depends also on the weight factor ν which must be selected
in an appropriate way. It is easy to see that the bias γ of the linear hyperplane
(1) in the feature space it the multiplier corresponding to the equality constraint
yT α = 0, now denoted by γ(p, ν).

To evaluate the training accuracy, it is assumed that a second set of test data
with known labels is given, (xt

i, y
t
i), i = 1, . . ., nt, from where the expression

f(xt
i, y

t
i , p, ν) := yt

i

(
K(xt

i, X, p)Y α(p, ν)− γ(p, ν)
)

= yt
i

( ∑n
j=1 yjk(xt

i, xj , p)αj(p, ν)− γ(p, ν)
) (9)

for i = 1, . . ., nt leads to the training or generalization error

e(Xt, yt, p, ν) :=
1
nt

(
nt−|{f(xt

i, y
t
i , p, ν) : f(xt

i, y
t
i , p, ν) > 0, i = 1, . . . , nt}|

)
. (10)

Here, |{. . .}| denotes the cardinality of a set, Xt := (xt
1, . . . , x

t
n), yt := (yt

1, . . . , y
t
n)T ,

and we define

f(Xt, yt, p, ν) := (f(xt
1, y

t
1, p, ν), . . . , f(xt

nt
, yt

nt
, p, ν))T .

Moreover we habe α(p, ν) = (α1(p, ν), . . . , αn(p, ν))T .
In a real life situation, it is sometimes difficult to find a suitable parameter p and

a weight ν. Statistical analysis, e.g., a principal component analysis as proposed
by Debnath and Takahashi [8], factorial design or similar techniques, see Cherkassy
and Ma [5] or Anguita et al. [1], often lead to the necessity to solve a large number
of quadratic programs of the form (7), especially if the number of parameters, np,
becomes large. A typical situation is, for example, the assignment of one parameter
of the RBF kernel to each attribute. Formal optimization approaches are found in
Ayat, Cheriet, and Suen [2] and in Chapelle et al. [4]. In the latter paper, also
alternative cost functions are discussed based on leave-one-out bounds.
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Section 2 contains a brief outline of the underlying strategy how to formulate an
optimization problem which can solved by a nonlinear programming algorithm. For
the numerical tests of this paper, we choose the sequential quadratic programming
(SQP) algorithm NLPQLP20 of Schittkowski [17]. The calculation of analytical
gradients of the solution of a quadratic programming subproblem is crucial for the
efficiency of any gradient-based code. It is shown how they are evaluated and how
an existing decomposition of a part of the kernel matrix can be exploited.

To illustrate the computational performance, some numerical test results are
summarized in Section 2 based on a few small size standard data sets and the
Gaussian kernel (5). Optimization variables are the kernel parameter p and the
weight ν of the L2-soft margin, see (7). A generalization to other kernels or other
treatment of outliers is straightforward. A more interesting question is whether the
same idea is applicable also to the case where an individual kernel parameter is
assigned to each feature of our experiment. By a further set of test runs, we show
some results where the conclusions are very similar and depend on the size of the
training data.

2. Optimal Selection of Kernel Parameters. The idea is to split the available
training data into two subsets. The first one is of size n and is denoted by a matrix
X and a diagonal label matrix Y or a label vector y, respectively. Both are used
to compute the dual variables α(p, ν) and the multiplier γ(p, ν) of the equality
constraint by solving (7). Then there is another set of size nt, (xt

i, y
t
i), i = 1, . . .,

nt, which is used to simulate the error of the training data.
The optimization problem consists of minimizing this error in the L1-norm over

all parameters p and all positive weights ν, i.e.,

p ∈ IRnp , ν ∈ IR :
min

nt∑

i=1

|f(xt
i, y

t
i , p, ν)−|

pl 6 p 6 pu, ν > 0,

(11)

where an evaluation of the objective function requires the solution of the implicitly
given quadratic program (7). The upper index ’-’ defines the violation of the sepa-
ration condition, i.e., a− := min{0, a}, and pl, pu are suitable bounds for the kernel
parameters.

However, (11) is non-differentiable and the standard trick is to introduce slack
variables z = (z1, . . . , znt

)T to get the equivalent smooth optimization problem

z ∈ IRnt , p ∈ IRnp , ν ∈ IR :
min eT z
f(Xt, yt, p, ν) + z > 0,
pl 6 p 6 pu, z > 0, ν > 0.

(12)

To apply an efficient gradient-based optimization method, we have to be able
to compute derivatives of the constraint functions f(Xt, yt, p, ν) subject to the pa-
rameter vector p and the weight ν. Since this function implicitly depends of the
solution of the quadratic programm (7), we have to analyze first the question, how
to get derivatives of the solution α(p, ν) and the multiplier of the equality constraint
yT α = 0, i.e., γ(p, ν).

To simplify the notation, we consider first a quadratic program of the form

α ∈ IRn :
min 1

2 αT A(x) α− eT α
yT α = 0
α > 0

(13)
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with y = (y1, . . . , yn)T ∈ IRn and a positive definite matrix A(x) depending on
a scalar parameter x ∈ IR. It is assumed that A(x) is continuously differentiable
subject to x. ¿From the corresponding Lagrangian function

L(α, γ, u) =
1
2

αT A(x)α− eT α− γ yT α− uT α

with a scalar multiplier γ for the equality constraint and a multiplier vector u ∈ IRn

for the bounds, we obtain the Karush-Kuhn-Tucker (KKT) optimality conditions

A(x)α− e− γy − u = 0,
yT α = 0,
uT α = 0,
α > 0,
u > 0.

(14)

It is furthermore assumed that the quadratic program (13) is not degenerate in the
sense that (13) satisfies the constraint qualification and the strict complementary
condition for all parameter values x. Both conditions are for example violated if
y = e. Then α = 0, γ = −1, and u = 0 solve (14) and we get a degenerate stationary
point.

Under these assumptions, we know that the multipliers γ and u are unique and
that we can perform the subsequent perturbation analysis leading to the derivatives
we are looking for. We choose a sufficiently small ε > 0 and replace A(x) by A(xε)
in (13) with xε := x + ε. The Karush-Kuhn-Tucker conditions of the perturbed
problem are

A(xε) αε − e− γε y − uε = 0,

yT αε = 0,

uT
ε αε = 0,

αε > 0,

uε > 0.

(15)

Let α, γ, and u be a solution of (14) with αi > 0 if and only if i ∈ I, I ⊂
{1, . . . , n}, α = (α1, . . . , αn)T . Since a solution αε, γε, and uε of (15) depends
continuously on ε, we can choose an ε sufficiently small so that also αε

i > 0 for all
i ∈ I, αε = (αε

1, . . . , α
ε
n)T . The complementary condition guarantees that ui = 0

and uε
i = 0 for all i ∈ I. Let J := {1, . . . , n} − I, u = (u1, . . . , un)T , and uε =

(uε
1, . . . , u

ε
n)T . We also have αj = 0 and uj > 0 for all j ∈ J. By further reduction

of ε, if necessary, we get uε
j > 0 for all j ∈ J and thus also αε

j = 0 for all j ∈ J.
We conclude that the sets of active bounds of (14) and (15) are identical, moreover

that the corresponding derivatives are zero, i.e.,
∂

∂x
ui = 0 for all i ∈ I,

∂

∂x
αj = 0 for all j ∈ J. (16)

Now we suppose that we know the active set of the bound constraints for α which
is identical to the active set of the perturbed problem for a sufficiently small ε. Let
AI(x) be the matrix A(x) obtained by deleting all rows and columns not belonging
to I, and AI(xε) the corresponding perturbed matrix. By deleting now the same
coefficients in y, we obtain yI. Then the Karush-Kuhn-Tucker conditions (14) and
(15) are

AI(x) αI − e− γ yI = 0,
yI

T αI = 0,
(17)
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and
AI(xε) αεI − e− γε yI = 0,
yI

T αεI = 0.
(18)

By combining both equations, we get

AI(xε) αεI −AI(x) αI = (AI(xε)−AI(x)) αεI + AI(x)(αεI − αI)
= (γε − γ) yI

(19)

or, after dividing by ε and going to the limit ε → 0,

AI(x)
∂

∂x
αI(x) =

∂

∂x
γ(x) yI − ∂

∂x
AI(x) αI(x). (20)

Here we introduce again the argument x for the KKT point αI and γ.
In addition, we have the identity

yI
T αI(x) = yI

T αεI(x) = 0, (21)

which is valid for all solutions of the perturbed problem (15). We conclude that in
the limit

yI
T ∂

∂x
αI(x) = 0, (22)

Since AI(x) is positive definite and since therefore ∂
∂xαI(x) can be eliminated from

(20), we get the derivative of the multiplier γ(x) from
∂

∂x
γ(x) =

1
yIT AI(x)−1 yI

yI
T AI(x)−1 ∂

∂x
AI(x) αI(x). (23)

The same investigation can be performed for each parameter of A for which we
want to compute the first partial derivatives.

Next, we consider again the support vector machine (7). We assume that the
kernel matrix depends on a parameter vector p ∈ IRnp . By successively replacing x
in A(x) in (13) by pi, i = 1, . . ., np, and ν, we get the subsequent theorem.

Theorem 2.1. Assume that the quadratic support vector machine (7) with L2-
soft margin is given, where the kernel function k(x, x, p) depends smoothly on a
parameter vector p ∈ IRnp . Then the partial derivatives of the solution α(p, ν) and
of the multiplier γ(p, ν) of the support vector machine (7) subject to the equality
constraint yT α = 0 are computed from

∂

∂pi
αI(p, ν) = AI(p, ν)−1

(
∂

∂pi
γ(p, ν) yI − YI

∂

∂pi
KI(X, X, p)YI αI(p, ν)

)
,

∂

∂pi
αJ(p, ν) = 0,

∂

∂pi
γ(p, ν) =

1
yIT AI(p, ν)−1yI

yI
T AI(p, ν)−1

YI
∂

∂pi
KI(X, X, p)YI αI(p, ν),

∂

∂ν
αI(p, ν) = AI(p, ν)−1

(
∂

∂ν
γ(p, ν)yI − αI(p, ν)

)
,

∂

∂ν
αJ(p, ν) = 0,

∂

∂ν
γ(p, ν) =

1
yIT AI(p, ν)−1yI

yI
T AI(p, ν)−1

αI(p, ν)

for i = 1, . . . , np, where J is the set of all active bounds of (7), I := {1, . . . , n} − J

and where A(p, ν) := Y K(X, X, p)Y + νI. AI(p, ν), KI(X, X, p), and YI denote
the submatrices of A(p, ν), K(X, X, p), and Y , respectively, obtained by deleting all
rows and columns belonging to J. αI, yI and αJ, , yJ are subvectors of α and y,
respectively, containing only coefficients belonging to I and J.
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The previous theorem enables us to compute the derivatives of the restrictions
in our relaxed optimization problem (12), see also (11), subject to p and ν. The
additional partial derivatives with respect to z are easily obtained. From (9) we
obtain

∂

∂pi
f(xt

i, y
t
i , p, ν) = yt

i

(
∂

∂pi
K(xt

i, X, p)Y α(p, ν) + K(xt
i, X, p)Y

∂

∂pi
α(p, ν)

− ∂

∂pi
γ(p, ν)

)
,

∂

∂ν
f(xt

i, y
t
i , p, ν) = yt

i

(
K(xt

i, X, p)Y
∂

∂ν
α(p, ν)− ∂

∂ν
γ(p, ν)

)
(24)

for i = 1, . . . , np. After inserting the partial derivatives obtained from Theorem 2.1,
we get the derivatives as required by the optimization algorithm.

After solving (11), we choose a third set of ne data with known labels, (xe
i , y

e
i ),

i = 1, . . ., ne, which is used to evaluate the error function e(Xe, ye, p?, ν?), see
(10), for an optimal parameter vector p? ∈ IRnp with corresponding multiplier ν?.
Here we have Xe := (xe

1, . . . , x
e
ne

) and ye := (ye
1, . . . , y

e
ne

)T . Since the evaluation
data (Xe, ye) must be different from the training data (X, y) and the test data
(Xt, yt) by which the error of the training data is measured, we get a performance
criterion which is independent from the data by which the optimal parameter set
is computed.

3. Implementation and Numerical Tests. Each step of the proposed approach
requires the solution of a strictly convex quadratic program (7) with one equality
constraint and lower bounds for the variables, which is solved by the primal-dual
method of Goldfarb and Idnani [10] based on numerically stable orthogonal decom-
positions, see Powell [14]. The corresponding Fortran subroutine is called QL, see
Schittkowski [16]. Since an initial Cholesky decomposition can be computed in the
calling program and passed to the solver, we decompose A(p, ν) in the form

A(p, ν) = U(p, ν)T U(p, ν)

with an upper triangular matrix U(p, ν). The particular advantage is that the same
Cholesky decomposition can be applied to compute the derivatives of the constraints
of (12) by which the generalization error is estimated. Since, however, rows and
columns of active bounds are deleted from A(p, ν), the Cholesky decomposition
must be reevaluated.

The nonlinear programming problem (12) is solved by the Fortran code NLPQLP,
see Schittkowski [15, 17]. In certain error cases, a non-monotone line search is ap-
plied by which the stability is significantly improved, see Dai and Schittkowski [7].
Functions and gradients must be provided by reverse communication and NLPQLP
is executed with termination accuracy ACC=10−12 for small size problems and
ACC=10−6 for the larger data sets. The Fortran codes are compiled by the In-
tel Visual Fortran Compiler, Version 8.0, under Windows XP, and executed on a
Pentium IV processor with 2.8 GHz and 2 GB memory.

The intention of the numerical tests is to show the feasibility of our approach. The
first 11 standard data sets are selected from the UCI Machine Learning Repository

http://www.ics.uci.edu/~mlearn/MLRepository.html

Proceeding from the available data files, they are chosen according to the relation
1:2:1. Moreover, there is the toy problem checkerb, for which data are randomly
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Table 1. Data Sets for Binary Classification

problem m n nt ne

sonar 60 52 104 52
tictacto 9 239 479 240
breacanc 9 71 143 72
banana 2 250 500 250
heartdis 13 67 135 68
german 24 250 500 250
breawis 9 170 341 172
adu1new 123 401 802 402
adu2new 123 566 1,132 567
adu3new 123 796 1,592 797
adu4new 123 1,195 2,390 1,196
checkerb 2 200 200 200,000

generated. Table 1 contains the name of the data set, the number of features m, the
number of training data n used to formulate and solve the SVM (7), the number
of training data nt which are used to formulate the error function in (12), and the
number of independent test data ne used to compare the classification error before
and after solving (12).

Unscaled data sets are scaled so that all data are between 0 and 1. Since some
data sets are somehow ordered subject to the labels, the patterns are randomly
selected before extracting them for one of the three different subsets as defined
above. Note that the bias γ of the linear hyperplane (1) in the feature space
corresponds to the multiplier corresponding to the equality constraint yT α = 0,
now denoted by γ(p, ν).

To evaluate the generalization error based on the entire set of training data, i.e.,
of n + nt, we proceed from parameter values p and ν, and solve (7) based now on
all available training data. We use the notation

X :=
(

X
Xt

)
, Y :=

(
Y 0
0 Y t

)
, y :=

(
y
yt

)
(25)

and solve the extended quadratic program (7), i.e.,

α ∈ IRn+nt :
min 1

2 αT (Y K(X, X, p)Y + νI)α− eT α
yT α = 0,
α > 0.

(26)

Let α(p, ν) be the optimal solution and γ(p, ν) be the corresponding multiplier of
the equality constraint. Proceeding from an independent set of ne test data, we
compute the error function

f(xe
i , y

e
i , p, ν) = ye

i

(
K(xe

i , X, p) Y α(p, ν)− γ(p, ν)
)

(27)

for i = 1, . . ., ne, see also (9), and in addition

e(Xe, ye, p, ν) :=
1
ne

(
ne − |{f(xe

i , y
e
i , p, ν) : f(xe

i , y
e
i , p, ν) > 0, i = 1, . . . , ne}|

)
,

(28)
see (10).
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Now we insert the optimal parameters (p?, ν?) and also the initial values (p0, ν0)
by which the optimization code is started, and use e? := e(p?, ν?) and e0 := e(p0, ν0)
to evaluate the generalization error before and after the optimization cycle.

The index set

Sv(p, ν) := {i : αi(p, ν) > 0, i = 1, . . . , n + nt} (29)

defines the support vectors of the SVM. Note that α(p, ν) denotes the multiplier
vector of a corresponding primal problem in the feature space where mapped data
are linearly separated, see (2) and (3). Thus, Sv(p, ν) also identifies the primal
variables active for the primal problem in the feature space. Too many active primal
variables can lead to overfitting, an undesired effect caused for example by a too
low number of training data. It is even possible, that all available training data are
perfectly separated with a maximized margin, but the resulting test function leads
to an insufficient separation of any other data. Thus, we report also the percentage
of support vectors before and after applying the optimization procedure, denoted
by

sv(p, ν) :=
100

n + nt
|Sv(p, ν)|,

for the optimal and the initial variables, s?
v := sv(p?, ν?) and s0

v := sv(p0, ν0).
An important effect of applying a support vector machine is to increase also the

margin by which the data are separated, see (2). Since we consider data sets which
are not completely separable, we allow violation of the separation condition and
evaluate the margin by (8), which depends now also on (p, ν),

µ(p, ν) =
(
eT α(p, ν)− να(p, ν)T

α(p, ν)
)−1/2

.

The displayed margin values are denoted by µ? := µ(p?, ν?) and µ0 := µ(p0, ν0).
Finally, we report also the optimal parameters ν? and p? for the case np = 1, and
the total number of iterations of the optimization algorithm, nit.

For our numerical tests, we use the Gaussian or RBF kernel (5),

k(x, x, p) = exp(−p‖x− x‖2).
First, we apply this kernel to all features with one common parameter p and np = 1.
The initial value for p is set to one, i.e., p0 = 1, if data are not scaled, and to
p0 = 1/m otherwise. The second optimization parameter, the weight factor ν, is
initially set to ν = 0.001. Results are summarized in Table 2.

Some small data sets, sonar, breacanc, banana, heartdis, and german, seem to be
overfitted. In all other cases, we observe a significant reduction of the generalization
error and the number of support vectors. Moreover, the margin is increased in most
cases. The number of iterations roughly corresponds to the number of SVMs to be
solved until an optimal parameter p? and an optimal weight ν? are reached. The
large number if iterations in some cases, e.g., banana, heartdis, adu2new, adu3new,
and adu4new, indicates that the optimization process is not very stable. Possible
reasons are numerical instabilities during the solution of (7), too many local minima,
very flat surfaces of the objective function, or non-unique solutions. Even a violation
of the assumptions under which the differentiability of a KKT point of the SVM
(7) is shown, is possible.

Now we apply one individual kernel parameter to each feature to have the pos-
sibility to weight the attributes and to select redundant ones. If x = (x1, . . . , xm)T
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Table 2. Performance Results for One Kernel Parameter

problem e? e0 s?
v s0

v µ? µ0 ν? p? nit

sonar 9.62 15.38 100 57 0.3268 0.0085 0.34 · 10+1 0.25 · 10+1 49
tictacto 0.83 14.58 53 99 0.0056 0.0437 0.14 · 10−2 0.13 · 10−1 101
breacanc 20.83 36.11 100 78 0.7483 0.0094 0.68 · 10+1 0.94 78
banana 12.00 12.80 94 35 0.3380 0.0152 0.11 · 10+2 0.17 · 10+1 318
heartdis 5.88 13.24 97 51 0.4102 0.0086 0.31 · 10+1 0.13 134
german 27.20 35.20 91 100 0.0767 0.5496 0.13 0.21 · 10+1 50
breawis 4.07 4.65 39 19 0.0011 0.0217 0.20 · 10−4 0.11 · 10−3 66
adu1new 17.91 25.62 77 100 0.0805 0.0347 0.34 0.19 · 10−2 41
adu2new 18.34 25.04 77 100 0.2130 0.0294 0.35 · 10+1 0.21 · 10−1 122
adu3new 15.93 24.87 76 99 0.2054 0.0256 0.39 · 10+1 0.16 · 10−1 137
adu4new 18.73 25.77 73 99 0.1762 0.0213 0.41 · 10+1 0.13 · 10−1 209
checkerb 5.95 6.72 8 7 0.0030 0.0014 0.00 0.15 · 10+2 57

and x = (x1, . . . , xm)T are two feature vectors and p = (p1, . . . , pm)T a vector of m
kernel parameters, we now define an extended kernel function by

k(x, x, p) = exp

(
−

m∑

i=1

pi(xi − xi)2
)

, (30)

see also (5). Instead of one kernel parameter, we list the mean value p? and in
addition the number of parameters which approach the lower bound zero, nr, see
Table 3. This figure is an indication whether there are redundant features or not.
In this case, the number of optimization variables of the nonlinear programming
problem (12) increases by the number of features m minus one.

In general, the number of iterations is much higher compared to the one-parameter
situation. We do not observe significant improvement of the performance index for
the small sized data set sonar. The generalization error e? and the margin µ? are
not improved significantly, but the average number of support vectors is reduced in
most cases. The results for the four data sets adu1new to adu4new are somewhat
different from the others. There are nearly no improvements of our performance cri-
teria, but we observe at least a much larger relative number of redundant attributes.
Again, the slow convergence is an indication of numerical instabilities either in the
numerical algorithm, the calculation of gradients, or the data.

It is interesting to see that the number of iterations, nit, is not related to the di-
mension of the optimization problem (12) which consists of up to nt+m+1 = 2, 514
variables and nt = 1, 195 constraints for adu4new. In this case, a quadratic pro-
gramming subproblem of size n = 1, 195 must be solved in each iteration for eval-
uating the constraint function values and their derivatives. Moreover, the applied
sequential quadratic programming algorithm requires the internal solution of an-
other quadratic program of the same size as the nonlinear program to compute a
search direction. Both are solved by the code QL of Schittkowski [16], see also the
initial comments of this section. To call the SQP code NLPQLP, we need internal
working space of more than 2.5(nt + m + 1)2 + (nt + m + 1)nt ≈ 2 · 107 double
precision real variables. The quadratic program (26) by which the generalization
error is computed, has up to n + nt = 3, 585 variables, and is again solved by the
dense algorithm QL.
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Table 3. Performance Results for m Kernel Parameters

problem e? e0 s?
v s0

v µ? µ0 ν? p? nr nit

sonar 19.23 15.38 44 57 0.0293 0.0085 0.73 · 10−2 0.16 15 284
tictacto 0.83 14.58 34 99 0.0002 0.0437 0.18 · 10−5 0.28 · 10−2 0 402
breacanc 18.06 36.11 94 78 0.3562 0.0094 0.15 · 10+1 0.86 · 10+1 1 324
banana 11.20 12.80 39 35 0.0275 0.0152 0.31 · 10−2 0.69 0 85
heartdis 10.29 13.24 80 51 0.0277 0.0086 0.74 · 10−2 0.90 · 10−1 6 284
german 26.80 35.20 90 100 0.0046 0.5496 0.27 · 10−3 0.95 · 10−1 4 211
breawis 3.49 4.65 53 19 0.0453 0.0217 0.66 · 10−1 0.18 2 66
adu1new 19.90 25.62 77 100 0.1219 0.0347 0.13 · 10+1 0.58 40 410
adu2new 19.93 25.04 77 100 0.1827 0.0294 0.31 · 10+1 0.44 36 500
adu3new 17.44 24.87 78 99 0.2186 0.0256 0.61 · 10+1 0.42 59 387
adu4new 18.23 25.77 80 99 0.2004 0.0213 0.66 · 10+1 0.42 50 445
checkerb 6.14 6.72 9 7 0.0027 0.0014 0.00 0.14 · 10+2 0 52

4. Conclusions. We present an approach to predetermine optimal kernel and
weighting parameters of a support vector machine. A nonlinear programming al-
gorithm is applied to an optimization problem, by which the generalization error
of one part of the training data is minimized over solutions of a quadratic SVM
subject to another subset of the training data. We consider binary classification
subject to the classical SVM with soft margin and penalization in the L2-norm, but
the idea is easily transferred to related models, e.g., penalization in the L1-norm.
Also the Gaussian kernel used throughout the paper, can be replaced by any other
kernel function or even a combination of different kernels.

Since the test data by which the overall efficiency of the SVM is measured, are
independent from the training data, we are able to evaluate the accuracy before
and after optimization. If the number of training data is not to small, a significant
reduction of the generalization error is observed. Also the number of support vectors
is decreased and the margin is increased.

However, the achievements depend on the choice of the initial parameters by
which the SQP algorithm is started, and must be interpreted very carefully. They
represent the improvement when little or no information is available about a suitable
choice of kernel parameters. Another difficulty is that the applied gradient-based
optimization algorithm is only able to approximate a local solution, and we do no
know whether better local minima exist. Since, however, a significant error reduc-
tion is obtained at least if the number of training data is not too small, and since
the number of solutions of quadratic SVMs is reasonably small, the optimization
approach seems to have some advantages over statistical methods, especially in case
of many kernel parameters.

Especially in case of many kernel parameters, obtained for example by assigning
individual weights to attributes, we observe slow convergence. Further investiga-
tions are necessary to understand this situation in more detail and to find out where
the numerical instability comes from.

Each evaluation of the constraints of our optimization problem requires the full
solution of a quadratic programming (QP) subproblem. Although the Cholesky
decomposition can be exploited for computing analytical derivatives efficiently, more
research efforts are required to handle very large training sets either by replacing
the dense QP solver by an iterative method for large scale quadratic programs or
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by applying a large scale optimization routine directly to the full problem, where
also the dual variables of the SVM are treated as optimization variables and where
the optimality conditions of the QP lead to nonlinear constraints.

Thus, the presented approach is applicable only to small data set sizes and al-
ternative optimization or modelling techniques are required to handle also larger
SVMs, for example gradient projection methods.
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