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Abstract

A PAC model under helpful distributions is introduced. A teacher
associates a teaching set with each target concept and we only consider
distributions such that each example in the teaching set has a non-zero
weight. The performance of a learning algorithm depends on the proba-
bilities of the examples in this teaching set. In this model, an Occam’s
razor theorem and its converse are proved. The class of decision lists is
proved PAC learnable under helpful distributions. A PAC learning model
with simple teacher (simplicity is based on program-size complexity) is also
defined and the model is compared with other models of teaching.

1 Introduction

It seems that many concept classes are not polynomially learnable in the basic
PAC learning model of Valiant([20]). One reason is the distribution free require-
ment (the learning must work with respect to an arbitrary distribution) even if
providing examples to the learner and evaluating the output hypothesis is per-
formed with the same distribution.

In practical learning situations, the examples given are likely to be chosen
so that they are “representative” of the target concept rather than random or
arbitrary. Therefore, it seems reasonable to investigate learning methods that
assume that the source of examples is “helpful”.

There are several ways to assume that examples are not arbitrary: the learner
may ask queries (see [2] for an overview); the class of distributions used to draw
examples can be restricted, thus the learning algorithm knows something about
the underlying distribution ([3], [L1], [15], [13]); a teaching set may be designed
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in order to help the learner ([7], [19], [8]). For instance, Goldman and Mathias
assume that the teacher builds a teaching set related to the target concept and
that an adversary adds new examples to this set in order to prevent collusion
between the learner and the teacher. Then, the learner must identify exactly the
target from this set of examples.

In the present paper, a new learning model with a helpful source of examples
is proposed. It is supposed that the teacher knows a representation of the target
concept and uses this representation to define a teaching set. The criterion of
success is the PAC criterion. But, we only consider helpful distributions i.e. such
that examples in the teaching set have a non zero probability to be drawn. More-
over the time requirement depends on the least probability of an example in the
teaching set to be drawn according to the probability distribution. The fact that
a learning algorithm must learn under all distributions not null on the teaching
set prevents, in some sense, collusion between the learner and the teacher while
the restriction on the class of distributions suffices to make statistical inferences
feasible.

In PAC learning theory, the Occam’s Razor Theorem of Blumer et al. [4] is
one of the most important results. Let us recall that an algorithm is an Occam
algorithm if it finds a short hypothesis consistent with the observed data. The
Occam’s razor theorem states that any efficient Occam algorithm is also a PAC
learning algorithm. This theorem provides a formal justification of the Occam
principle. We prove an Occam’s razor theorem in the PAC learning model under
helpful distributions. The main difference is that we use multisets of examples
and that the size condition depends on the frequencies of examples of the teaching
set in the multisample. Using this theorem, we prove that decision lists are PAC
learnable in our model. Our Occam algorithm for decision lists supposes that
examples in the teaching set are frequent in the multisample. Consequently,
examples are examined by decreasing multiplicity. This corresponds to a usual
heuristic in practical learning algorithms. Like in the usual PAC setting (see
[17]), we prove a converse of the Occam’ razor theorem for many natural classes.

Finally, we define a simple PAC learning model and compare it with the model
of Li and Vitanyi ([13]). A teacher is simple if for each concept, the examples
of the teaching set are of low conditional Kolmogorov complexity relatively to
the target. We consider PAC learnability under helpful distributions for a simple
teacher. We can use our Occam’s Razor Theorem to find new proofs of simple
learnability results in the sense of Li and Vitanyi (even those which did not
seemed possible to be stemed from an Occam algorithm [5]).

Our model is defined in Section 2. The Occam’s razor theorem is given and
proved in Section 3. Learnability of decision lists is proved in Section 4. Our
simple PAC learning model is defined in Section 5.



2 PAC Learning under Helpful Distributions

2.1 Definitions and Notations

Let B, be the set of boolean functions from X, = {0,1}" into {0,1}. Let B =
Up>1By. A class F of boolean functions is a subset of B. A representation scheme
for a class of boolean functions F is a function R : F — 2% where ¥ is a finite
alphabet and such that for each f and f" in F, R(f) is not empty and if f # f',
R(f)N R(f") = (). We suppose that R is computable in polynomial-time, that
is, there exists a polynomial-time deterministic algorithm which takes as input a
pair of strings « and ¢ and outputs 1 if f(x) = 1 with ¢ € R(f), and 0 otherwise.
A concept class C is defined by C = UserR(f). We will identify a concept ¢ in
C' and the function f which is represented by ¢. We define the size of a concept
c as its length |¢| and we suppose as usual that |¢| > n.

An ezample of a concept ¢ is a pair (z,c(x)), where z is in the domain of c.
An example (z,c(x)) is positive if ¢(xz) = 1 and negative otherwise. We denote
by EX(c) (respectively POS(c), NEG(c)) the set of all examples (respectively
positive examples, negative examples) of a concept ¢. A sample of ¢ is a subset
of EX(¢). A multisample of ¢ is a multiset of examples of ¢. Let S, be a sample
of ¢ and S be a multisample of ¢, S. C S if each example in S, occurs at least
once in S. Let ¢ be a target concept over X,, and let P be any fixed probability
distribution over X,,. Let EX(c, P) be a procedure that runs in unit time and
that at each call returns an example (z,c(z)), where z is drawn randomly and
independently according to P. If ¢’ is any concept in C' over X,, we define

error(c') = P{z € X, | e(x) # (2)}).

2.2 Definition of our model

Definition 1. Let C be a concept class. A teaching set for ¢ € C is a sample
of ¢. A teacher for C' is a mapping 7 which associates with each concept ¢, a
teaching set T (c). A teacher is polynomial if there is a constant k& such that for
every concept ¢, Card(T(c)) < |c|f. A teacher is computable if there exists an
algorithm which takes as input a concept ¢ in ', and produces as output the
teaching set 7 (c).

Definition 2. Let C be a concept class and let 7 be a teacher for C. Let ¢ be a
target concept over X,, and let P be any fixed probability distribution over X,,.
Let us define

Pruin(c) = {mm{P(x) | (@ e(x) € T{)} i T(c) # D,

1 otherwise.

A distribution P is helpful w.r.t. ¢ and T if Ppn(c) # 0.
We now define PAC learnability under helpful distributions.
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Definition 3. Let C' be a concept class and let T be a teacher for C'.

e An algorithm A is a PAC learning algorithm for C under helpful distri-
butions if A takes as input € € (0,1], § € (0,1], an integer [, and for all
concepts ¢ in C with |¢| <1 and all helpful probability distributions P, A
is given access to EX (¢, P) and A outputs some ¢’ in C, such that with
probability at least 1 — 4, error(c’) <e.

o Cis PAC learnable under helpful distributions T if there is a PAC learning
algorithm A for C' under helpful distributions which runs in time polynomial

in1/e, 1/6, 1, and 1/ Ppin(c).

Our model generalizes the PAC learning model because a concept class C' is
PAC learnable if and only if C' is PAC learnable with the empty teacher (for
each concept ¢, the teaching set is empty). Goldman and Mathias have defined
a teaching model ([8]) in which for each concept ¢, a teacher chooses a set of
examples T'(c). The size of T'(¢) must be polynomial but the teacher can have
unbounded computation time. The learner gets the examples in the teaching set
along with a set chosen by the adversary. The learner must output a hypothesis
logically equivalent to ¢ in polynomial time. Now let us consider a concept
class €' which is learnable in this model with learner L and teacher 7. We
consider the teacher 7 = T'. It is now easy to define a PAC learning algorithm
A for C under helpful distributions : draw a large enough sample S (such that
Pr(T(c) € S) > 1—90) and output L(S). The number of drawn examples is
polynomial in 1/ and 1/ P, (c) and Algorithm A is probably exact.

We will also need PAC learnability in usually polynomial time.

Definition 4. Let C be a concept class and let 7 be a teacher. C is PAC
learnable under helpful distributions in usually polynomial time if there is a PAC
learning algorithm A for C' under helpful distributions such that, with probability
at least 1 — §, A halts in time polynomial in 1/e, 1/§, [, and 1/P.(c).

As in Valiant’s framework, if A(e, d,1) is a usually polynomial time PAC learn-
ing algorithm for C' under helpful distributions, there exists a usually polynomial
time PAC learning algorithm A’ which only takes as input € and 4.

3 Occam’s Razor Theorem

3.1 Occam Learning

In this Section we give an Occam’s Razor Theorem for our learning model.



Definition 5. Let C be a concept class and 7 be a teacher for C'. Let S be a
non empty multisample of some concept ¢ in C'. Let us define

min{ 22 | (2, ¢(2)) € T(e)} if T(e) #0,

1 otherwise.

fmin(S,¢) = {

where S(z,c(z)) denotes the number of occurences of (x,¢(z)) in S.

Note that if P is the uniform distribution on S, we have P,.;,.(¢) = frnin(S, ¢).
Note also that if T(c¢) C S, then 1/ fnn(S,¢) < Card(S).

Definition 6. Let C' be a concept class and T be a teacher for C.

B is an Occam algorithm for C', T if there exists constants ¢ > 0, b > 0 and
0 < a < 1 such that with a multisample S of ¢ in X,, such that 7(¢) € S on
input, B outputs a hypothesis concept ¢’ such that:

e (' is consistent with S,
o || < a(lel/ fmin(S; €))*(Card(S))?,
e B runs in polynomial time in |¢|, Card(S).

Let us point out the differences between the definition of an Occam algorithm
in Valiant’s PAC learning model and the definition of an Occam algorithm in our
model. First, an Occam algorithm in our model only has to work properly if the
multisample S contains the teaching set 7 (¢) of the target concept ¢. Second, ¢
need to be short only if f,.;.(5, ¢) is not too small (polynomial in 1/|c|), i.e. if S
is drawn according to a helpful probability distribution P and if S is sufficiently
large, Ppin(c) is not too small. In our model, given an Occam algorithm for C, T,
a PAC learning algorithm A for C' under helpful distributions will iterate over
larger guesses for 1/ P, (c).

We can now give our main theorem:

Theorem 1. Let C' be a concept class and let T be a polynomial teacher for C.
If there is an Occam algorithm for C,T, then C is PAC learnable under helpful

distributions in usually polynomial time.

3.2 Proof of the Occam’s Razor Theorem

The proof is merely sketched. Let C be a concept class and let 7 be a polynomial
teacher for C. Let k be a constant such that for every concept ¢, Card(T (c)) <
(|c|)¥. Let B be an Occam algorithm for C, 7T with constants (a,b,a). Let g
denote the polynomial such that B has time complexity ¢(|c|, Card(S)). Let ¢
be a concept. Whenever we consider the oracle EX(c, P), we suppose that the
probability distribution P is helpful w.r.t. ¢ and 7. Let [ be an integer such that
le| < 1. We first prove two technical lemmas.
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Lemma 1. Let p be an integer such that p > 1/P.i.(c). Make Ni(6,1,p) =
[8plog(1¥/8)] calls to EX (e, P). This defines a multisample S. Then the proba-
bility that frin(S,¢) > Prin(c)/2 is at least 1 — 4.

Proof. The proof is based on the classical Chernoff bounds (see for instance [12],
190-192). O

Lemma 2. Make Ny(€,0,1,p) = [((10g(1/5)—|—a(2pl)b—|—1)/6)ﬁw calls to EX (¢, P).
This defines a multisample S. Suppose that fi..n(S,¢) > 1/2p. Let ¢’ be the out-
put of the Occam algorithm B on input S. Then the probability that error(c’) > €
is at most §.

Proof. Let S be a multisample of cardinality N and let us consider the set
H.={c € C|error(c) > cand || < a(2pl)’N*}.

Let ¢ € H.. The probability that a call to FX (e, P) returns an example con-
sistent with ¢ is less than 1 — e. Therefore the probability that N calls to
EX(c, P) return a multisample S consistent with ¢’ is less than (1 — ¢)". More-
over, the cardinality of H. is less than 20(2p)° N+1, Consequently the probability
that the multisample S of cardinality N is consistent with a concept ¢ in H.
is less than 2“(2p1)bNQ+1(1 — ¢)N. Verify that 2“Na(2pl)b+1(l —¢)V < § whenever
N > Ny(e, 0,1, p).

Now let us suppose that N > Ny(e€, 6,1, p) and frnin(S,¢) > 1/2p. frin(S,¢) >
0, thus 7(¢) € S. On input S the algorithm B outputs a hypothesis concept ¢
consistent with S such that

|| < allel/ fmin(S, €))*(Card(5))™ < a(2pl)’N°.
Finally if error(c’) > ¢, ¢ € H.. O

Now let us consider the hypothesis testing algorithm T'E ST with parameters
€, 9, i, and ¢ (see [10]). The algorithm makes [(32/¢)(:In2 + In2/§)] calls to
EX(c, P) to test hypothesis ¢/. It accepts the hypothesis if the hypothesis is
wrong on no more than a fraction of %6 of the examples returned by the oracle,
and rejects it otherwise. TEST (e, 4,1, ¢') is polynomial in 1/¢,1/4,1,|c'|. And we
have:

Lemma 3. (Haussler et al. [10]) The test TEST (€,0,1,¢') has the property that:
when error(c') > ¢, the probability is at most §/2%! that the test will accept ¢,
when error(c’) < €/2, the probability is at most §/2*! that the test will reject .

PAC Learning Algorithm A for C, T
input: ¢, ¢, [
begin



Set S to () - - S is the current multisample
Set p to 1 - - p is the current guess for 1/ P, (c)
loop
Set N to sup{N:1(8/3,1,p), Na(e/2,0/3,1,p)}
Call EX (¢, P) until Card(S) =N
Run at most ¢(I, NV, 2p) steps of B on input S
if B outputs some ¢’
and ¢ consistent with S and || < a(pl)°*N®
and TEST(e,6/3,p,c)
then output ¢ and halt
endif
Set p to p+1
endloop
end

We now prove that A4 is a PAC learning algorithm for C' under helpful dis-
tributions. When the learning algorithm A halts at some step p, the probability
that error(c’) > € is at most §/(3 x 2¢*!). This is due to the halting condition
TEST(e,6/3,p,c), and to Lemma 3. Therefore, when the learning algorithm A
halts, the probability that error(c’) > € is at most 6/3.

It remains to prove that, with probability at least 1 —¢, A halts in polynomial
time in 1/¢, 1/4, [, and 1/Pin(c). Let p = [1/Ppin(c)] and N > Ny(§/3,1,p).
Then, the probability that f.;n(S,¢) > Puin(c)/2 is at least 1 —§/3 (Lemma 1).
Suppose fmin(S,¢) > Pnin(c)/2 and N > Ny(¢/2,6/3,1, p). Then, the probability
that error(c’) > €/2is at most 6/3 (Lemma 2). Suppose now that error(c’) < ¢/2,
the probability that the test TEST (e, d, p, ') will reject ¢’ is at most §/(3 x 2P+1)
(Lemma 3). Therefore, the probability that the algorithm A does not halt at step
p = [1/Pnin(c)] is at most ¢ and the probability that the learning algorithm A
does not halt before p = [1/Pin(c)] is at most §. It is now easy to verify that if
the algorithm A halts before p = [1/P,.in(c)], then the running time is bounded
by a polynomial in 1/€, 1/4, [, and 1/ P, (c). This ends the proof.

3.3 Converse of the Occam’s Razor Theorem

As in the usual PAC setting, a converse of the Occam theorem holds for concept
classes which are strongly closed under exception ([17], see also [16]):

Theorem 2. IfC is PAC learnable under helpful distributions in usually polyno-
mial time and if C is strongly closed under exception then there exists a random-
ized algorithm B such that with 6 and a multisample S of ¢ such that T(c) C S
on input, then with probability at least 1 — &, B outputs a hypothesis concept ¢
such that:



o (' is consistent with S,

o there exists constants a > 0,b > 0 and a < 1 which do not depend on S
and ¢ such that || < a(|e|/ fmin(S,c))?|S|%,

e B runs in polynomial time in log(1/9), Card(S) and |c|.

Proof. We just remark here that the uniform distribution on S is helpful and
that it can be simulated by a randomized algorithm. The proof is similar to the
one for the classical PAC model. O

4 Learning Decision Lists

A decision list over x1,... ,x, is an ordered sequence
L= (ml, bl), cee (mp, bp)

of terms, in which each m; is a monomial over zy,... ,z,, and each b; € {0, 1}.
The last monomial is always m, = 1. For any input a € {0,1}", the value
L(a) is defined as b;, where i is the smallest index satisfying m;(a) = 1. We
consider polynomial-time binary representations of decision lists such that if ¢
represents a decision list of p terms over n variables, then |c| = O(np). The class
of k-decision lists (each monomial contains at most & litterals) are PAC learnable
([18]). Decision lists are not known to be PAC learnable, but lower bounds on
learning decision lists are given in [9]. The class of k-decision lists is learnable
in the teaching model of [8]. Therefore it is probably exactly learnable under
helpful distributions. We prove in this Section that the concept class of decision
lists is PAC learnable under helpful distributions. Note that decision lists are a
superset of DNF formulas and thus DNF formulas are learnable using decision
lists. It can be proved, using a greedy heuristic, that DNF formulas are learnable
under helpful distributions.

First, let us define the teacher 7. Let m be a monomial over zy,...,z,. Let
0. € X,, be defined by m(0,,) = 1 and vector 0,, has the value 0 for variables
not in m. Let 1,, € X, be defined by m(1,,) = 1 and vector 1,, has the value
1 for variables not in m ([13]). Let ¢ be a representation of a decision list L =
(my,b1),...,(my,,b,), we define

T(¢) ={(0m;, c(0m)) [ 1 <i < ppU{(Lmis (1)) [ 1 <0 < p}.

The purpose of the teaching set for a target decision list ¢ is to allow the
construction of the monomials of ¢. Indeed, let z,z’ in X,,, we define x o 2’ as
the monomial over xq,...,z, which contains x; if x and 2’ have ‘1’ in position
7, contains 7; if x and @’ have ‘0’ in position 7, and does not contain variable x;
otherwise (1 <7 < n). Given the teaching set T (¢) of some decision list ¢, the
set {m =z oa'|(z,c(x)),(2',¢c(2")) € T(c)} contains the monomials of c.
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Proposition 1. Decision lists are PAC learnable under helpful distributions.

Proof. We denote by D the class of decision lists. We give an Occam algorithm
for D, T which is based on the Rivest’s algorithm for k-decision lists, and then we
use our Occam’s razor theorem. Our algorithm uses examples in .S by decreasing
number of occurences until we are ensured that all examples in the teaching set
have been used.

Occam Algorithm B
input: a multisample S of a target concept ¢

begin
Set 2 to 1; set hypothesis concept ¢’ to the empty list
while S # ()

Set S; to {(z,¢(x)) € S| S(x,e(x)) > Card(5)}

Set M; to {m =z o' | (z,c(z)) € S;, (x’:c(:ﬁ’)) € 5:}

while there is a monomial m in M; satisfied by an example (y, b)

in S and by no example (2,b) in S
Set ¢’ to ¢ + (m,b)
Set Sto S —{(y,b) € S |m(y) =1}
endwhile
Set1tor+1
endwhile
output hypothesis concept ¢
end

It is now easy to prove that B is an Occam algorithm for D, 7. Let ¢ be the
target decision list. Let us suppose that T (c) C S, and let 7 = [1/fnin(S,¢)].
B halts at most at step ¢ = j because the set M; contains all the monomials of
c. The hypothesis concept ¢ is consistent with S and the length of ¢’ is bounded
by Card(M;) = ([1/fmin(S,¢)])%  As 1/ frnin(S,¢) < Card(S), it is easy to
prove that B runs in polynomial time in |¢|, Card(S). Now, Theorem 1 can be
applied. O

5 Simple PAC Learning Models

The reader may refer to [14] for complete definitions, proofs and guide-lines in
the litterature on Kolmogorov complexity.

The definition of a simple PAC learning algorithm (Li and Vitanyi [13]) is
the same as the definition of a PAC learning algorithm except that the class of
probability distributions is restricted to the universal Solomonoff-Levin distribu-
tion m which is defined w.r.t. a reference universal prefix Turing machine U.



Some classes were shown simple PAC learnable in [13]. Castro and Balcazar have
proved that log-n decision lists (where each term is of Kolmogorov complexity
O(logn)) are simple PAC learnable in [5]. It is not clear whether the sets of
simple PAC learnable classes depend on the reference prefix Turing machine but
one can easily prove that the simple PAC learnable classes of ([13],[5]) are simple
PAC learnable for all reference prefix Turing machines. An Occam theorem can
be proved in the simple PAC learning framework but it seems doubtful to obtain
a converse of this result. Another drawback is that m is not computable.

Definition 7. Let C be a concept class. T is a simple teacher if there exists a
constant k > 0 satisfying:

Vee CV(z,c(z)) € T(e) K(z|c) < Eklog(]cl).

Recall that K(z|c) is the conditional complexity of  w.r.t. ¢, i.e. the length
of a least self delimited program which computes = from ¢. We note that the
simplicity of a teacher does not depend on the reference prefix Turing machine

U.
Proposition 2. A simple teacher is polynomial.

Proof. The cardinality of the set of strings of length lower than klog(|c|) is
bounded by |c[F+1, O

Proposition 3. Let C be a concept class. Let T be a polynomial and computable
teacher. Then T is a simple teacher.

Proof. Let ¢ be a concept in C. Let (z,¢(x)) be an example in T (¢). We have:
K(z|e) < K(z|T(c))+ K(T(c)|c)+O(1). Since T is polynomial, Card(S.) < |c|*,
therefore we get K(z|7(¢)) < klog(|c|)+O(1). Moreover, since T is computable,
K(T(¢)|e) < 0O(1). O

For instance, the teacher we have defined for the class of decision lists is
polynomial and computable therefore it is a simple teacher. We now define our
simple PAC learning model:

Definition 8. Let C be a concept class. C' is PAC learnable with simple teacher
if C is PAC learnable under helpful distributions for some simple teacher.

Note that the definition of PAC learnability with simple teacher does not
depend on the reference prefix Turing machine U. As a corollary of Proposition
3, we get:

Proposition 4. Let C be a concept class. If C is PAC learnable under helpful
distributions for a polynomial and computable teacher, then C s PAC learnable
with simple teacher.
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For instance, we have proved that decision lists are PAC learnable under
helpful distributions for a polynomial and computable teacher. Therefore decision
lists are PAC learnable with simple teacher.

In order to prove that simple classes of concepts are simple PAC learnable in
the sense of [13], we can often show that a more general class is learnable with
simple teacher and then use the next proposition.

Proposition 5. Let C be a concept class. Suppose C is PAC learnable with a
simple teacher T . Let k be an integer and let us define the concept class

Cr=Hce C|V(z,c(z)) € T(c) K(z) < klog(|c|)}-
For each k, the concept class Cy s stmple PAC learnable.

For instance, since decision lists are PAC learnable with simple teacher, the
previous result provides a new proof of the simple PAC learnability of log n-
decision lists. Note that this proof uses an Occam algorithm contrary to what
was announced in [5].
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