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Abstract: Kernel Methods have become an increasingly popular tool for ma-
chine learning tasks involving classification, regression or novelty detection.
They exhibit good generalisation performance on many real-life datasets and
the approach is properly motivated theoretically. There are relatively few free
parameters to adjust and the architecture of the learning machine does not
need to be found by experimentation. In this tutorial we survey this subject
with a principal focus on the most well-known models based on kernel substi-
tution, namely, Support Vector Machines.

1 Introduction.

Support Vector Machines (SVMs) have been successfully applied to a num-
ber of applications ranging from particle identification, face identification and
text categorisation to engine knock detection, bioinformatics and database
marketing [9]. The approach is systematic and properly motivated by sta-
tistical learning theory [42]. Training involves optimisation of a convex cost
function: there are no false local minima to complicate the learning process.
The approach has many other benefits, for example, the model constructed
has an explicit dependence on the most informative patterns in the data (the
support vectors), hence interpretation is straightforward and data cleaning
[8] could be implemented to improve performance. SVMs are the most well
known of a class of algorithms which use the idea of kernel substitution and
which we will broadly refer to as kernel methods.

In this tutorial we introduce this subject, describing the application of kernel
methods to classification, regression and novelty detection and the different
optimisation techniques that may be required during training. This tutorial is
not exhaustive and many approaches (e.g. kernel PCA [30], density estimation
[47], etc) have not been considered. More thorough treatments are contained
in the books by Cristianini and Shawe-Taylor [6], Vapnik’s classic textbook
on statistical learning theory [42] and recent edited volumes [29,35].
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Fig. 1. The perpendicular distance between the separating hyperplane and a hyper-
plane through the closest points (the support vectors) is called the margin. x; and
X9 are examples of support vectors of opposite sign.

2 Learning with Support Vectors.

To introduce the subject we will begin by outlining the application of Support
Vector Machines to the simplest case of binary classification. From the per-
spective of statistical learning theory the motivation for considering binary
classifier SVMs comes from theoretical bounds on the generalisation error
[42,6]. Though we do not quote the relevant theorem here we note that it has
two important features. Firstly, the upper bound on the generalization error
does not depend on the dimension of the space. Secondly, the error bound is
minimised by maximising the margin, v, i.e. the minimal distance between
the hyperplane separating the two classes and the closest datapoints to the
hyperplane (Figure 1).

Let us consider a binary classification task with datapoints x; (1 = 1,...,m)
having corresponding labels y; = +1 and let the decision function be:

J(x) = sign (w - x + b) (1)

If the dataset is separable then the data will be correctly classified if y;(w-x; +
b) > 0 Vi. Clearly this relation is invariant under a positive rescaling of the
argument inside the sign-function, hence we can define a canonical hyperplane
such that w - x + b = 1 for the closest points on one side and w-x+ b= —1
for the closest on the other side. For the separating hyperplane w-x 4+ b= 0
the normal vector is clearly w/ ||w||,, and hence the margin is given by the
projection of x; — X5 onto this vector (see Figure 1). Since w -x; + b = 1
and w - Xy + b = —1 this means the margin is vy = 1/ ||w]||,. To maximise the
margin the task is therefore:
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subject to the constraints:

and the learning task can be reduced to minimisation of the primal lagrangian:

m

L= wow) = S o ((w o x+5) ~ 1) (4)

=1

where «; are Lagrangian multipliers (hence o; > 0). Taking the derivatives
with respect to b and w and resubstituting back in the primal gives the Wolfe
dual lagrangian:

W(a)=> ai— % i aioyiy; (Xi - X;) (5)

=1 7,75=1
which must be maximised with respect to the a; subject to the constraint:

a; >0 Yoayi=0 (6)
=1

So far we haven’t used the second feature implied by the generalisation the-
orem mentioned above: the bound does not depend on the dimensionality of
the space. For the dual lagrangian (5) we notice that the datapoints, x;, only
appear inside an inner product. To get a better representation of the data
we can therefore map the datapoints into an alternative higher dimensional
space, called feature space, through a replacement:

X; - X; = ¢ (i) - o(x;) (7)

The functional form of the mapping ¢(x;) does not need to be known since it
is implicitly defined by the choice of kernel: K(x;,x;) = ¢(x;)- ¢(x;) or inner
product in feature space (feature space must therefore be a pre-Hilbert or inner
product space). With a suitable choice of kernel the data can become separable
in feature space despite being non-separable in the original input space: hence
kernel substitution provides a route for obtaining nonlinear algorithms from
algorithms previously restricted to handling linearly separable datasets. Thus,
for example, whereas data for n-parity or the two spirals problem is non-
separable by a hyperplane in input space it can be separated in the feature
space defined by RBF kernels (giving an RBF-type network):

K (xi,x;) = e~ ximx)?/202 (8)



Many other choices for the kernel function are possible e.g.:

[X](X“X]‘) = (Xi © X + 1)d [X](X“X]‘) = tanh(ﬁxi “X; + b) (9)

defining polynomial and feedforward neural network classifiers. Indeed, the
class of mathematical objects which can be used as kernels is very general,
and includes scores produced by dynamic alignment algorithms [10,45], for
example. Suitable kernels must satisfy a mathematical condition: Mercer’s
theorem [19].

For binary classification with the given choice of kernel the learning task there-
fore involves maximisation of the lagrangian:

= 1

W(a)=> a;— 5

=1

Z OziOé]‘yiy]‘I((X“X]‘) (10)

1,5=1

subject to the constraints (6). The associated Karush-Kuhn-Tucker (KKT)
conditions are:

which are always satisfied when a solution is found. After the optimal values
of a; have been found the decision function is based on the sign of:

f(Z) = f: yiOéiI((Z, Xi) +b (12)

=1

Since the bias, b, does not feature in the above dual formulation it is found
from the primal constraints:

b= —% lﬂmaxl}( > y]‘Oé]‘[((XZ’,X]‘)) + min ( > yjozj[((xi,xj))](li’))
ilyi=—

je{sv} {ilvi=+13 \ jdsvy

We will henceforth refer to such a solution («y,b) as a hypothesis modelling
the data.

When the maximal margin hyperplane is found in feature space, only those
points which lie closest to the hyperplane have «; > 0 and these points are



Fig. 2. A multi-class classification problem can be reduced to a series of binary
classification tasks.

the support vectors. All other points have «; = 0. This means that the repre-
sentation of hypothesis is solely given by those points which are closest to the
hyperplane and they are the most informative patterns in the data.

Many problems involve multiclass classification and a number of schemes have
been outlined [18,46] (with broadly similar performance). One of the simplest
schemes is to use a directed graph (Figure 2) with the learning task reduced
to binary classification at each node [25].

2.1  Soft margins and allowing for training errors.

Most real life datasets contain noise and an SVM can fit this noise leading
to poor generalisation. The effect of outliers and noise can be reduced by
introducing a soft margin [4] and two schemes are currently used. In the first
(L1 error norm) the learning task is the same as in (10,6) except for the
introduction of the box constraint:

while in the second (L, error norm) the learning task is (10,6) except for
addition of a small positive constant to the leading diagonal of the kernel
matrix [4,26]:

I((Xi, Xi) — I((Xi, Xi) + A (15)

(" and A control the trade-off between training error and generalisation ability
and are chosen by means of a validation set. The effect of these soft margins

is illustrated in Figure 3 for the ionosphere dataset from the UCI Repository
[48].
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Fig. 3. Left: Generalisation error as a percentage (y-axis) versus C' (z-axis) and
right: generalisation error as a percentage (y-axis) versus A (2-axis) for soft margin
classifiers based on Iy and Ly error norms respectively. The UCI ionosphere dataset
was used with RBF kernels (¢ = 1.5) and 100 samplings of the data.

The justification for these soft margin techniques comes from statistical learn-
ing theory but can be readily viewed as relaxation of the hard margin con-
straint (3). Thus for the L; error norm (and prior to introducing kernels) we
introduce a positive slack variable & into (3):

yi(w-x; +0) >1—-¢ (16)
and the task is now to minimise the sum of errors "7 & in addition to ||w]|*:

1 m
min lﬁw-w—l—cz&] (17)
=1
This is readily formulated as a primal objective function :

1 m
L(W,b,a,f):§W-W—I—C§ :52
=1

m m

= ailyi(wexi +b) = L+ &] =D ri& (18)

with Lagrange multipliers o; > 0 and r; > 0. The derivatives with respect to
w, b and ¢ give:

oL U

a—W—W_;Oéiini =0 (19)
oL

- = gy, = 0 (20)
o = 2
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=C—ai—ri=0 (21)

Resubstituting these back in the primal objective function we obtain the same
dual objective function, (10), as before. However, r; > 0 and C' — o; — r; = 0,
hence a; < € and the constraint 0 < «; is replaced by 0 < a; < C'. Patterns
with values 0 < «; < C will be referred to later as non-bound and those with
a; = 0 or a; = C will be said to be at bound. For an L; error norm we find
the bias in the decision function (12) by using the final KKT condition in
(11). Thus if 7 is a non-bound pattern it follows that b = y; — 3= oy, K (x4, X;)
assuming y; = +1.

The optimal value of ' must be found by experimentation using a validation
set and it cannot be readily related to the characteristics of the dataset or
model. In an alternative approach (v-SVM [33]) it can be shown that solutions
for an Lji-error norm are the same as those obtained from maximising:

Wia) = —3 3 w0y K(xx;) (22)

1,5=1

subject to:

(23)

1
m

> yiai =0 iz 0<a; <

where v lies on the range 0 to 1. The fraction of training errors is upper
bounded by v and v also provides a lower bound on the fraction of points
which are support vectors. Hence in this formulation the conceptual meaning
of the soft margin parameter is more transparent.

For the Ly error norm the primal objective function is:

L(w,b a,f)—lw W+CZ§2

=1

—Z:ozZ [y: (W-x; +b) — 1 + &] ZTH (24)

=1

with a; > 0 and r; > 0. After obtaining the derivatives with respect to w, b and
€, substituting for w and £ in the primal objective function and noting that
the dual objective function is maximal when r; = 0, we obtain the following



dual objective function after kernel substitution:

m

m | ) |
Wia) =2 ai=5 2 ywseia; K(xi,x;) = 15> of (25)

=1 7,75=1 =1

With A = 1/2C this gives the same dual objective function as for hard margin
learning except for the substitution (15). For many real-life datasets there is an
imbalance between the amount of data in different classes, or the significance of
the data in the two classes can be quite different. For example, for the detection
of tumours on MRI scans it may be best to allow a higher number of false
positives if this improved the true positive detection rate. The relative balance
between the detection rate for different classes can be easily shifted [43] by
introducing asymmetric soft margin parameters. Thus for binary classification
with an Ly error norm 0 < o; < C4 (y; = +1), and 0 < oy < C_ (y; = —1),
while I((Xi, Xi) — I((Xi, Xi) + )\_|_ (lf Y; = —|—1) and I((Xi, Xi) — I((Xi, Xi) + A

(if y; = —1) for the Ly error norm.

2.2 A Linear Programming Approach to Classification.

Rather than using quadratic programming it is also possible to derive a ker-
nel classifier in which the learning task involves linear programming instead.
Formulated directly in feature space this involves:

min E} ai + Cé&] (26)

subject to:

Yi [i ai K (zg,25) +b] = 1= (27)

J=1

where o; > 0 and & > 0. By minimising 7", o; we could obtain a solution
which is sparse i.e. relatively fewer datapoints are used. Furthermore, effi-
cient simplex or column generation implementations exist for solving linear
programming problems so this is a practical alternative to conventional QP
SVMs. This linear programming approach evolved independently of the QP
approach to SVMs [17] and, as we will see, linear programming approaches to
regression and novelty detection are also possible.



3 Novelty Detection.

For many real-world problems the task is not to classify but to detect novel
or abnormal instances. Novelty or abnormality detection has potential appli-
cations in many problem domains such as condition monitoring or medical
diagnosis. One approach is to model the support of a data distribution (rather
than having to find a real-valued function for estimating the density of the
data itself). Thus, at its simplest level, the objective is to create a binary-
valued function which is positive in those regions of input space where the
data predominantly lies and negative elsewhere.

One approach [36] is to find a hypersphere with a minimal radius R and centre
a which contains most of the data: novel test points lie outside the boundary
of this hypersphere. The technique we now outline was originally suggested
by Vapnik [41,1], intepreted as a novelty detector by Tax and Duin [36] and
used by the latter authors for real life applications [37]. The effect of outliers is
reduced by using slack variables ¢; to allow for datapoints outside the sphere
and the task is to minimise the volume of the sphere and number of datapoints
outside i.e.

1
in |R* + — ; 28
min l + — Z; f] ( )
subject to the constraints:

(x; —a)T(x; —a) < R+ & (29)

and & > 0, and where v controls the tradeoff between the two terms. The
primal objective function is then:

1 m m
L(R,a,00, &) =R+ —> &= &
my.—; i=1

—Zai(Rz—l—fi—(Xi-xi—Za-Xi—l—a-a)) (30)

=1

with a; > 0 and v; > 0. After kernel substitution the dual formulation amounts
to maximisation of:

W(oz) = iai[{(xi,xi) — f: OziOé]‘[((Xi,X]‘) (31)

=1 7,75=1



with respect to «; and subject to > a; =1 and 0 < o < 1/mwv. fmr > 1
then at bound examples will occur with a; = 1/mv and these correspond to
outliers in the training process. Having completed the training process a test
point z is declared novel if:

I((Z, Z) -2 Z OziI((Z, Xi) + Z OziOé]‘[((Xi, X]‘) — Rz >0 (32)

=1 7,75=1

where R? is first computed by finding an example which is non-bound and
setting this inequality to an equality.

An alternative approach has been developed by Scholkopf et al. [31]. Suppose
we restricted our attention to RBF kernels: in this case the data lie in a region
on the surface of a hypersphere in feature space since ¢(x)-¢(x) = K(x,x) =1
from (8). The objective is therefore to separate off this region from the surface
region containing no data. This is achieved by constructing a hyperplane which
is maximally distant from the origin with all datapoints lying on the opposite
side from the origin and such that w-x; +b > 0. After kernel substitution the
dual formulation of the learning task involves minimisation of:

1 m
W(oz) = — OziOé]‘[((Xi,X]‘) (33)
2 i,k=1
subject to:
0< < ! i 1 (34)
o &~ — oy =
N my =1

To determine the bias we find an example, k say, which is non-bound (¢; and
B; are nonzero and 0 < a; < 1/mv) and determine b from:

b= — f: Oé]‘[((X]‘, Xk) (35)

i=1
The support of the distribution is then modelled by the decision function:

f(z) = sign (i a;K(xj,2z) + b) (36)

i=1

In the above models the parameter v has a neat interpretation as an upper
bound on the fraction of outliers and a lower bound of the fraction of patterns
which are support vectors [31]. Scholkopf et al.[31] provide good experimental

10
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Fig. 4. The solution in input space for the hyperplane minimising W (e, b) in equa-
tion (37). A hard margin was used with RBF kernels trained using a ¢ = 0.2.

evidence in favour of this approach including the highlighting of abnormal
digits in the USPS handwritten character dataset. The method also works well
for other types of kernel. This and the earlier scheme for novelty detection can
also be used with an L, error norm in which case the constraint 0 < a; < 1/mv
is removed and an addition to the kernel diagonal is used instead.

For the model of Scholkopt et al. the origin of feature space plays a special
role. It effectively acts as a prior for where the class of abnormal instances is
assumed to lie. Rather than repelling away from the origin we could consider
attracting the hyperplane onto datapoints in feature space. In input space this
corresponds to a surface which wraps around the data clusters (Figure 4) and
can be achieved through the following linear programming task [2]:

min [Z (Z Oé]‘[((XZ', X]‘) + b) (37)
=1 \j=1
subject to:
Z Oé]‘[((XZ', X]‘) +b >0 (38)
7=1
ZO@ZL OéZZO (39)
=1

The bias b is just treated as an additional parameter in the minimisation
process, though unrestricted in sign. To handle noise and outliers we can

11
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Fig. 5. Left figure: a linear e-insensitive loss function versus y; — w - x; — b. Right
figure: a quadratic e-insensitive loss function.

introduce a soft boundary:

min [ Y (i Oé]‘[((XZ', X]‘) + b) + A f: fZ] (40)

=\
subject to:

YooK (xi,x;) +b>—&, §>0 (41)

i=1

and constraints (39). This method has been successfully used for detection
of abnormalities in blood samples and detection of faults in the condition
monitoring of ball-bearing cages [2].

4 Regression.

For real-valued outputs the learning task can also be theoretically motivated
from statistical learning theory. Instead of (3) we now use constraints y; —
w-x;,—b<cand w-x;+b—1y; <e¢toallow for some deviation ¢ between
the eventual targets y; and the function f(x) = w -x + b, modelling the
data. We can visualise this as a band or tube of size £(§ — v) around the
hypothesis function f(x) and any points outside this tube can be viewed as
training errors. The structure of the tube is defined by an e—insensitive loss
function (Figure 5). As before we minimise ||w||* to penalise overcomplexity.
To account for training errors we also introduce slack variables &, é for the
two types of training error. These slack variables are zero for points inside the
tube and progressively increase for points outside the tube according to the
loss function used. This general approach is called e-SV regression [41] and is
the most common approach to SV regression, though not the only one [42].

12



For a linear e—insensitive loss function the task is therefore to minimise:

min [||w||2 +cfj (& +@)] (42)

=1
subject to

Yyi—w-x; —b<e+¢;
(woxi b -yt 43)

where the slack variables are both positive &, é > 0. After kernel substitution
the dual objective function is:

Wi(a,a) —in;yi(oq a;) — cin;(ozz + a;)
3 D (o )l — @)K () (1)

and:

0<o;<C  0<a;<C (46)

Similarly a quadratic e—insensitive loss function gives rise to:

min [Ilwllz roy (e +é?)] (47)

=1

subject to (43), giving a dual objective function :

W(oz, 6&) = in: yi(OéZ' — OAéZ) — éin:(oq —|— 6&2)
2 3 (= e, — &) (K x,) +3,/C) (13)

13



which is maximised subject to (45). The function modelling the data is then:

m

f(2) = (0 — @)K (xi,m) + b (19)

=1

We still have to compute the bias, b, and we do so by considering the KKT
conditions for regression. For a linear loss function prior to kernel substitution
these are:

ai(e+&—yi+w-x;+0)=0
@i(é—I-é—I-yi—W'Xi—b):O (50)

where w = 37", y;(a; — a;)x;, and:

(C — ozi) fz =0
(C—a))&=0 (51)
From the latter conditions we see that only when o; = C or a; = C are

the slack variables non-zero: these examples correspond to points outside the
e-insensitive tube. Hence from (50) we can find the bias from a non-bound
example with 0 < «; < C' using b = y; — w-x; — € and similarly for 0 < a; < C
we can obtain it from b = y; — w-x; + €. Though the bias can be obtained from
one such example it is best to compute it using an average over all points on
the margin.

Apart from the formulations given here it is possible to define other loss func-
tions giving rise to different dual objective functions. In addition, rather than
specifying € a priori it is possible to specify an upper bound v (0 < v < 1)
on the fraction of points lying outside the band and then find € by optimising
over the primal objective function:

%HWHQ—I-C (Vm€+§:|yi_f(xi)|) (52)

=1

with € acting as an additional parameter to minimise over [28]. As for classifi-
cation and novelty detection it is possible to formulate a linear programming
approach to regression with [47]:

min[Zai—l—ZOzf—l-CZ&—l-CZ@*] (53)
=1 =1 =1 =1

14



subject to:

yi—e—§ < (Z (05_0‘1‘) K(fl?iw’l?j)) tosyitet§ (54)

J=1

Minimising the some of of the «; approximately minimises the number of
support vectors which favours sparse hypotheses with smooth functional ap-
proximations of the data. In this approach the kernel does not need to satisfy
Mercer’s condition [47].

5 Algorithmic Approaches

So far the methods we have considered have involved linear or quadratic
programming. Linear programming can be implemented using column gen-
eration techniques [21] and many packages are available, e.g. CPLEX. For
quadratic programming there are also many applicable techniques including
quasi-Newton, conjugate gradient and primal-dual interior point methods [16].
Certain QP packages are readily applicable such as MINOS and LOQO. These
methods can be used to train an SVM rapidly but they have the disadvantage
that the kernel matrix is stored in memory. For small datasets this is practical
and QP routines are the best choice, but for larger datasets alternative tech-
niques have to be used. These split into two categories: techniques in which
kernel components are evaluated and discarded during learning and working
set methods in which an evolving subset of data is used. For the first category
the most obvious approach is to sequentially update the «; and this is the
approach used by the Kernel Adatron (KKA) algorithm [7]. For binary classifi-
cation (with no soft margin or bias) this is a simple gradient ascent procedure
on (10) in which «; > 0 initially and the «; are subsequently sequentially
updated using:

a; « 30 (5) where Bi=a;+1n (1 — Yy ijyjK(Xij)) (55)

i=1

and () is the Heaviside step function. The optimal learning rate n can be
readily evaluated: n = 1/K(x;,x;) and a sufficient condition for convergence is
0 < nkK(xi,x;) < 2. With the decision function (12) this method is very easy
to implement and can give a quick impression of the performance of SVMs
on classification tasks. It is equivalent to Hildreth’s method in Optimisation
theory and can be generalised to the case of soft margins and inclusion of a
bias [16]. However, it is not as fast as most QP routines, especially on small
datasets.

15



Chunking and Decomposition. Rather than sequentially updating the «;
the alternative is to update the a; in parallel but using only a subset or chunk
of data at each stage. Thus a QP routine is used to optimise the lagrangian on
an initial arbitrary subset of data. The support vectors found are retained and
all other datapoints (with a; = 0) discarded. A new working set of data is then
derived from these support vectors and additional datapoints which maximally
violate the storage constraints. This chunking process is then iterated until
the margin is maximised. Of course, this procedure may still fail because the
dataset is too large or the hypothesis modelling the data is not sparse (most
of the «; are non-zero, say). In this case decomposition [23] methods provide
a better approach: these algorithms only use a fixed size subset of data with
the «; for the remainder kept fixed.

Decomposition and Sequential Minimal Optimisation (SMO). The
limiting case of decomposition is the Sequential Minimal Optimisation (SMO)
algorithm of Platt [24] in which only two «; are optimised at each iteration.
The smallest set of parameters which can be optimised with each iteration is
plainly two if the constraint >°7*, a;y; = 0 is to hold. Remarkably, if only two
parameters are optimised and the rest kept fixed then it is possible to derive
an analytical solution which can be executed using few numerical operations.
The method therefore consists of a heuristic step for finding the best pair
of parameters to optimise and use of an analytic expression to ensure the
lagrangian increases monotonically. For the hard margin case the latter is easy
to derive from the maximisation of W with respect to the additive corrections
a,bin a; = a; +a and a; — o+ b, (i # 7). For the L; soft margin care must
be taken to avoid violation of the constraints (14) leading to bounds on these
corrections. The SMO algorithm has been refined to improve speed [15] and
generalised to cover the above three tasks of classification [24], regression [34]
and novelty detection [31]. Due to its decomposition of the learning task and
speed it is probably the method of choice for training SVMs.

Model Selection. Apart from the choice of kernel the other indeterminate
is the choice of the kernel parameter (e.g. o in (8)). The kernel parameter
can be found using cross-validation if sufficient data is available. However,
recent model selection strategies can give a reasonable estimate for the kernel
parameter without use of additional validation data. As a first attempt we
can use a theorem stating that the generalisation error bound is reduced as
the margin v is increased. This theorem gives the upper bound as R?/m~?
where R is the radius of the smallest ball containing the training data. At an
optimum of (10) it is possible to show that v? = 1/, a? (where a? are the
values of «; at the optimum). Also for RBF kernels R ~ 1 (the data lies on
the surface of hypersphere since ¢(x) - ¢(x) = K(x,x) = 1 from (8)) so the
bound can be written 37 af/m. Hence an estimate for o can be found by
sequentially training SVMs on the same dataset at successively larger values
of o, evaluating the bound from the a? for each case and choosing that value

16



of o for which the bound is minimised. This method [5] will give a reasonable
estimate if the data is spread evenly over the surface of the hypersphere but it
is poor if the data lie in a flat ellipsoid, for example, since the radius R would
be influenced by the largest deviations. More refined estimates therefore take
into account the distribution of the data.

One approach [3] is to theoretically rescale data in feature space to compen-
sate for uneven distributions. A more complex strategy along these lines has
also been proposed by Scholkopf et al [32] which leads to an algorithm which
has performed well in practice for a small number of datasets. The most eco-
nomical way to use the training data is to use a leave-one-out procedure [3,13].
As an example, we consider a recent scheme proposed by Joachims [14]. In
this approach the number of leave-one-out errors of an L;-norm soft margin
SVM is bounded by [{i : (20:B* + &) > 1}|/m where «; are the solutions of
the optimisation task in (10,6) and B? is an upper bound on K(x;,z;) with
K(x;,2;) > 0 (we can determine §; from y;(3°: a; K(x;, ;) +b) > 1=¢;). Thus,
for a given value of the kernel parameter, the leave-one-out error is estimated
from this quantity (the system is not retrained with datapoints left out: the
bound is determined using the o from the solution of (10,6)). The kernel pa-
rameter is then incremented or decremented in the direction needed to lower
the bound. This method has worked wekk on classification of text [14].

6 Further techniques based on kernel representations.

So far we have considered methods based on linear and quadratic program-
ming. Here we shall consider further approaches which may utilise general
nonlinear programming or other techniques. In particular, we will consider
approaches to two issues: how to improve generalisation performance over
standard SVMs and how to create hypotheses which are sparse.

For the dual of input space datapoints become hyperplanes and separating hy-
perplane becomes points. Version space is the space of all hypotheses (points)
consistent with the data and this space is bounded by the set of hyperplanes
representing the data. An SVM solution can be viewed as the centre of the
largest inscribable hypersphere in version space: the support vectors corre-
spond to those examples with hyperplanes tangentially touching this hyper-
phere (Figure 6). If version space is aspherical then the centre of the largest
inscribed hypersphere does not appear to be the best choice. Indeed, a better
choice would be the Bayes point: approximately the centre of mass of version
space. Bayes Point Machines (BPMs) construct a hypothesis based on this cen-
tre of version space and this choice can be justified by theoretical arguments
[22,44,27] in addition to having a geometric appeal.
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Fig. 6. The centre of mass of version space (4) and the centre of the largest inscribed
sphere (x) in an elongated version space

In one approach the centre of mass is determined using a kernelised billiard
algorithm in which version space is traversed uniformly and an estimate of the
centre of mass is repeatedly updated. For a large majority of datasets version
space diverges from sphericality and the BPM outperforms an SVM at sta-
tistically significant levels. For artificial examples with very elongated version
spaces the generalisation error of a BPM can be half that of an SVM [11,12].
However, current implementations of BPMs have a number of drawbacks: the
algorithm can be slow in execution and better mechanisms for a soft boundary
(imitating a soft margin) need to be found (the implementation in [12,11] also
did not include a bias).

Rather than using the centre of mass of version space an alternative might
be to use a hypothesis that lies towards the centre of this space but which is
easier to compute. This could be achieved by using repulsive potentials ®(«)
favouring points towards the centre of version space [27]. As an example we
could use:

m

min ¢(a) = Z In (o K (;,2;) +b) (56)

=1
subject to:

al =1 (57)

1

1 m
2 &

K3

which is the basis of the Analytic Center Machine [39]. The gradient and

Hessian for (56) can be readily evaluated and the algorithm appears to perform
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well in practice achieving a test error of 6.83% on a dataset for which an SVM
gave 11.82%, for example.

The Bayes Point Machine may exhibit good generalisation but it has the dis-
advantage that the hypothesis is dense i.e. nearly all datapoints have «; # 0
and hence they appear in the final hypothesis. Ideally we would also like to
derive kernel classifiers or regression machines which give sparse hypothe-
ses using a minimal number of datapoints. The most effective means of ob-
taining sparse hypotheses remains the object of research but an excellent
scheme is the Relevance Vector Machine of Tipping [38]. Using the function
f(z) =X, i K(z,2;) + b with weights a;,b to model the data, a Bayesian
prior is defined over these parameters favouring smooth functions. From Bayes
rule a posterior over the weights can be obtained and thence a marginal like-
lihood or evidence. Iterative maximisation of this evidence suggests suitable
kernel values for pruning, creating an eventual hypothesis which is sparse in
the number of datapoints used. Experiments show that this approach can
sometimes give hypotheses which only use a few percent of the available data

[38].

7 Conclusion

The approach we have considered is very general in that it can be applied
to a wide range of machine learning tasks and can be used to generate many
possible learning machine architectures (RBF networks, feedforward neural
networks) through an appropriate choice of kernel. Above all, kernel methods
have been found to work well in practice. The subject is still very much un-
der development but it can be expected to develop as an important tool for
machine learning and applications.
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