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Abstract� Kernel Methods have become an increasingly popular tool for ma�
chine learning tasks involving classi�cation� regression or novelty detection�
They exhibit good generalisation performance on many real�life datasets and
the approach is properly motivated theoretically� There are relatively few free
parameters to adjust and the architecture of the learning machine does not
need to be found by experimentation� In this tutorial we survey this subject
with a principal focus on the most well�known models based on kernel substi�
tution� namely� Support Vector Machines�

� Introduction�

Support Vector Machines �SVMs� have been successfully applied to a num�
ber of applications ranging from particle identi�cation� face identi�cation and
text categorisation to engine knock detection� bioinformatics and database
marketing 	
�� The approach is systematic and properly motivated by sta�
tistical learning theory 	�
�� Training involves optimisation of a convex cost
function� there are no false local minima to complicate the learning process�
The approach has many other bene�ts� for example� the model constructed
has an explicit dependence on the most informative patterns in the data �the
support vectors�� hence interpretation is straightforward and data cleaning
	�� could be implemented to improve performance� SVMs are the most well
known of a class of algorithms which use the idea of kernel substitution and
which we will broadly refer to as kernel methods�

In this tutorial we introduce this subject� describing the application of kernel
methods to classi�cation� regression and novelty detection and the di�erent
optimisation techniques that may be required during training� This tutorial is
not exhaustive and many approaches �e�g� kernel PCA 	���� density estimation
	���� etc� have not been considered� More thorough treatments are contained
in the books by Cristianini and Shawe�Taylor 	��� Vapnik�s classic textbook
on statistical learning theory 	�
� and recent edited volumes 	

�����
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Fig� �� The perpendicular distance between the separating hyperplane and a hyper�
plane through the closest points �the support vectors� is called the margin� x� and
x� are examples of support vectors of opposite sign�

� Learning with Support Vectors�

To introduce the subject we will begin by outlining the application of Support
Vector Machines to the simplest case of binary classi�cation� From the per�
spective of statistical learning theory the motivation for considering binary
classi�er SVMs comes from theoretical bounds on the generalisation error
	�
���� Though we do not quote the relevant theorem here we note that it has
two important features� Firstly� the upper bound on the generalization error
does not depend on the dimension of the space� Secondly� the error bound is
minimised by maximising the margin� �� i�e� the minimal distance between
the hyperplane separating the two classes and the closest datapoints to the
hyperplane �Figure ���

Let us consider a binary classi�cation task with datapoints xi �i � �� � � � �m�
having corresponding labels yi � �� and let the decision function be�

f�x� � sign �w � x� b� ���

If the dataset is separable then the data will be correctly classi�ed if yi�w �xi�
b� � � �i� Clearly this relation is invariant under a positive rescaling of the
argument inside the sign�function� hence we can de�ne a canonical hyperplane
such that w � x� b � � for the closest points on one side and w � x� b � ��
for the closest on the other side� For the separating hyperplane w � x� b � �
the normal vector is clearly w� jjwjj�� and hence the margin is given by the
projection of x� � x� onto this vector �see Figure ��� Since w � x� � b � �
and w � x� � b � �� this means the margin is � � �� jjwjj�� To maximise the
margin the task is therefore�

Minimise g�w� �
�



jjwjj�� �
�






subject to the constraints�

yi �w � xi � b� � � �i ���

and the learning task can be reduced to minimisation of the primal lagrangian�

L �
�



�w �w��

mX
i��

�i �yi�w � x� b�� �� ���

where �i are Lagrangian multipliers �hence �i � ��� Taking the derivatives
with respect to b and w and resubstituting back in the primal gives the Wolfe
dual lagrangian�

W ��� �
mX
i��

�i �
�




mX
i�j��

�i�jyiyj �xi � xj� ���

which must be maximised with respect to the �i subject to the constraint�

�i � �
mX
i��

�iyi � � ���

So far we haven�t used the second feature implied by the generalisation the�
orem mentioned above� the bound does not depend on the dimensionality of
the space� For the dual lagrangian ��� we notice that the datapoints� xi� only
appear inside an inner product� To get a better representation of the data
we can therefore map the datapoints into an alternative higher dimensional
space� called feature space� through a replacement�

xi � xj � � �xi� � ��xj� ���

The functional form of the mapping ��xi� does not need to be known since it
is implicitly de�ned by the choice of kernel� K�xi�xj� � ��xi� ���xj� or inner
product in feature space �feature space must therefore be a pre�Hilbert or inner
product space�� With a suitable choice of kernel the data can become separable
in feature space despite being non�separable in the original input space� hence
kernel substitution provides a route for obtaining nonlinear algorithms from
algorithms previously restricted to handling linearly separable datasets� Thus�
for example� whereas data for n�parity or the two spirals problem is non�
separable by a hyperplane in input space it can be separated in the feature
space de�ned by RBF kernels �giving an RBF�type network��

K�xi�xj� � e��xi�xj������ ���

�



Many other choices for the kernel function are possible e�g��

K�xi�xj� � �xi � xj � ��d K�xi�xj� � tanh��xi � xj � b� �
�

de�ning polynomial and feedforward neural network classi�ers� Indeed� the
class of mathematical objects which can be used as kernels is very general�
and includes scores produced by dynamic alignment algorithms 	������� for
example� Suitable kernels must satisfy a mathematical condition� Mercer�s
theorem 	�
��

For binary classi�cation with the given choice of kernel the learning task there�
fore involves maximisation of the lagrangian�

W ��� �
mX
i��

�i �
�




mX
i�j��

�i�jyiyjK�xi�xj� ����

subject to the constraints ���� The associated Karush�Kuhn�Tucker �KKT�
conditions are�

yi �w � xi � b�� �� � �i

�i� � �i

�i �yi�w � xi � b�� �� � � �i ����

which are always satis�ed when a solution is found� After the optimal values
of �i have been found the decision function is based on the sign of�

f�z� �
mX
i��

yi�iK�z�xi� � b ��
�

Since the bias� b� does not feature in the above dual formulation it is found
from the primal constraints�

b � �
�




�� max
fijyi���g

�� mX
j�fSVg

yj�jK�xi�xj�

�A � min
fijyi���g

�� mX
j�fSVg

yj�jK�xi�xj�

�A������

We will henceforth refer to such a solution ��i� b� as a hypothesis modelling
the data�

When the maximal margin hyperplane is found in feature space� only those
points which lie closest to the hyperplane have �i � � and these points are

�
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Fig� �� A multi�class classi�cation problem can be reduced to a series of binary
classi�cation tasks�

the support vectors� All other points have �i � �� This means that the repre�
sentation of hypothesis is solely given by those points which are closest to the
hyperplane and they are the most informative patterns in the data�

Many problems involve multiclass classi�cation and a number of schemes have
been outlined 	������ �with broadly similar performance�� One of the simplest
schemes is to use a directed graph �Figure 
� with the learning task reduced
to binary classi�cation at each node 	
���

��� Soft margins and allowing for training errors�

Most real life datasets contain noise and an SVM can �t this noise leading
to poor generalisation� The e�ect of outliers and noise can be reduced by
introducing a soft margin 	�� and two schemes are currently used� In the �rst
�L� error norm� the learning task is the same as in ������ except for the
introduction of the box constraint�

� � �i � C ����

while in the second �L� error norm� the learning task is ������ except for
addition of a small positive constant to the leading diagonal of the kernel
matrix 	��
���

K�xi�xi�� K�xi�xi� � � ����

C and � control the trade�o� between training error and generalisation ability
and are chosen by means of a validation set� The e�ect of these soft margins
is illustrated in Figure � for the ionosphere dataset from the UCI Repository
	����
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Fig� �� Left� Generalisation error as a percentage �y�axis� versus C �x�axis� and
right� generalisation error as a percentage �y�axis� versus � �x�axis� for soft margin
classi�ers based on L� and L� error norms respectively� The UCI ionosphere dataset
was used with RBF kernels �� � ��	� and �

 samplings of the data�

The justi�cation for these soft margin techniques comes from statistical learn�
ing theory but can be readily viewed as relaxation of the hard margin con�
straint ���� Thus for the L� error norm �and prior to introducing kernels� we
introduce a positive slack variable 	i into ����

yi �w � xi � b� � � � 	i ����

and the task is now to minimise the sum of errors
Pm

i�� 	i in addition to jjwjj
��

min

�
�



w �w � C

mX
i��

	i

�
����

This is readily formulated as a primal objective function �

L�w� b� �� 	� �
�



w �w � C

mX
i��

	i

�
mX
i��

�i 	yi �w � xi � b�� � � 	i��
mX
i��

ri	i ����

with Lagrange multipliers �i � � and ri � �� The derivatives with respect to
w� b and 	 give�


L


w
�w �

mX
i��

�iyixi � � ��
�


L


b
�

mX
i��

�iyi � � �
��

�




L


	i
�C � �i � ri � � �
��

Resubstituting these back in the primal objective function we obtain the same
dual objective function� ����� as before� However� ri � � and C � �i � ri � ��
hence �i � C and the constraint � � �i is replaced by � � �i � C� Patterns
with values � � �i � C will be referred to later as non�bound and those with
�i � � or �i � C will be said to be at bound� For an L� error norm we �nd
the bias in the decision function ��
� by using the �nal KKT condition in
����� Thus if i is a non�bound pattern it follows that b � yi�

P
j �jyjK�xi�xj�

assuming yi � ���

The optimal value of C must be found by experimentation using a validation
set and it cannot be readily related to the characteristics of the dataset or
model� In an alternative approach ���SVM 	���� it can be shown that solutions
for an L��error norm are the same as those obtained from maximising�

W ��� � �
�




mX
i�j��

�i�jyiyjK�xi�xj� �

�

subject to�

mX
i��

yi�i � �
mX
i��

�i � � � � �i �
�

m
�
��

where � lies on the range � to �� The fraction of training errors is upper
bounded by � and � also provides a lower bound on the fraction of points
which are support vectors� Hence in this formulation the conceptual meaning
of the soft margin parameter is more transparent�

For the L� error norm the primal objective function is�

L�w� b� �� 	� �
�



w �w � C

mX
i��

	�i

�
mX
i��

�i 	yi �w � xi � b�� � � 	i��
mX
i��

ri	i �
��

with �i � � and ri � �� After obtaining the derivatives with respect tow� b and
	� substituting for w and 	 in the primal objective function and noting that
the dual objective function is maximal when ri � �� we obtain the following

�



dual objective function after kernel substitution�

W ��� �
mX
i��

�i �
�




mX
i�j��

yiyj�i�jK�xi�xj��
�

�C

mX
i��

��i �
��

With � � ��
C this gives the same dual objective function as for hard margin
learning except for the substitution ����� For many real�life datasets there is an
imbalance between the amount of data in di�erent classes� or the signi�cance of
the data in the two classes can be quite di�erent� For example� for the detection
of tumours on MRI scans it may be best to allow a higher number of false
positives if this improved the true positive detection rate� The relative balance
between the detection rate for di�erent classes can be easily shifted 	��� by
introducing asymmetric soft margin parameters� Thus for binary classi�cation
with an L� error norm � � �i � C� �yi � ���� and � � �i � C� �yi � ����
while K�xi�xi�� K�xi�xi���� �if yi � ��� and K�xi�xi�� K�xi�xi����
�if yi � ��� for the L� error norm�

��� A Linear Programming Approach to Classi�cation�

Rather than using quadratic programming it is also possible to derive a ker�
nel classi�er in which the learning task involves linear programming instead�
Formulated directly in feature space this involves�

min

�
mX
i��

�i � C
mX
i��

	i

�
�
��

subject to�

yi

�� mX
j��

�iK�xi� xj� � b

�� � � � 	i �
��

where �i � � and 	i � �� By minimising
Pm

i�� �i we could obtain a solution
which is sparse i�e� relatively fewer datapoints are used� Furthermore� e��
cient simplex or column generation implementations exist for solving linear
programming problems so this is a practical alternative to conventional QP
SVMs� This linear programming approach evolved independently of the QP
approach to SVMs 	��� and� as we will see� linear programming approaches to
regression and novelty detection are also possible�

�



� Novelty Detection�

For many real�world problems the task is not to classify but to detect novel
or abnormal instances� Novelty or abnormality detection has potential appli�
cations in many problem domains such as condition monitoring or medical
diagnosis� One approach is to model the support of a data distribution �rather
than having to �nd a real�valued function for estimating the density of the
data itself�� Thus� at its simplest level� the objective is to create a binary�
valued function which is positive in those regions of input space where the
data predominantly lies and negative elsewhere�

One approach 	��� is to �nd a hypersphere with a minimal radius R and centre
a which contains most of the data� novel test points lie outside the boundary
of this hypersphere� The technique we now outline was originally suggested
by Vapnik 	������ intepreted as a novelty detector by Tax and Duin 	��� and
used by the latter authors for real life applications 	���� The e�ect of outliers is
reduced by using slack variables 	i to allow for datapoints outside the sphere
and the task is to minimise the volume of the sphere and number of datapoints
outside i�e�

min

�
R� �

�

m�

X
i

	i

�
�
��

subject to the constraints�

�xi � a�T �xi � a� � R� � 	i �

�

and 	i � �� and where � controls the tradeo� between the two terms� The
primal objective function is then�

L�R�a� �i� 	i��R� �
�

m�

mX
i��

	i �
mX
i��

�i	i

�
mX
i��

�i

	
R� � 	i � �xi � xi � 
a � xi � a � a�



����

with �i � � and �i � �� After kernel substitution the dual formulation amounts
to maximisation of�

W ��� �
mX
i��

�iK�xi�xi��
mX

i�j��

�i�jK�xi�xj� ����






with respect to �i and subject to
Pm

i�� �i � � and � � �i � ��m�� If m� � �
then at bound examples will occur with �i � ��m� and these correspond to
outliers in the training process� Having completed the training process a test
point z is declared novel if�

K�z� z�� 

mX
i��

�iK�z�xi� �
mX

i�j��

�i�jK�xi�xj��R� � � ��
�

where R� is �rst computed by �nding an example which is non�bound and
setting this inequality to an equality�

An alternative approach has been developed by Sch�olkopf et al� 	���� Suppose
we restricted our attention to RBF kernels� in this case the data lie in a region
on the surface of a hypersphere in feature space since ��x����x� � K�x�x� � �
from ���� The objective is therefore to separate o� this region from the surface
region containing no data� This is achieved by constructing a hyperplane which
is maximally distant from the origin with all datapoints lying on the opposite
side from the origin and such that w �xi� b � �� After kernel substitution the
dual formulation of the learning task involves minimisation of�

W ��� �
�




mX
i�k��

�i�jK�xi�xj� ����

subject to�

� � �i �
�

m�

mX
i��

�i � � ����

To determine the bias we �nd an example� k say� which is non�bound ��i and
�i are nonzero and � � �i � ��m�� and determine b from�

b � �
mX
j��

�jK�xj�xk� ����

The support of the distribution is then modelled by the decision function�

f�z� � sign

�� mX
j��

�jK�xj� z� � b

�A ����

In the above models the parameter � has a neat interpretation as an upper
bound on the fraction of outliers and a lower bound of the fraction of patterns
which are support vectors 	���� Sch�olkopf et al�	��� provide good experimental

��
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Fig� �� The solution in input space for the hyperplane minimising W ��� b� in equa�
tion ����� A hard margin was used with RBF kernels trained using a � � 
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evidence in favour of this approach including the highlighting of abnormal
digits in the USPS handwritten character dataset� The method also works well
for other types of kernel� This and the earlier scheme for novelty detection can
also be used with an L� error norm in which case the constraint � � �i � ��m�
is removed and an addition to the kernel diagonal is used instead�

For the model of Sch�olkopf et al� the origin of feature space plays a special
role� It e�ectively acts as a prior for where the class of abnormal instances is
assumed to lie� Rather than repelling away from the origin we could consider
attracting the hyperplane onto datapoints in feature space� In input space this
corresponds to a surface which wraps around the data clusters �Figure �� and
can be achieved through the following linear programming task 	
��

min

�� mX
i��

�� mX
j��

�jK�xi�xj� � b

�A�� ����

subject to�

mX
j��

�jK�xi�xj� � b � � ����

mX
i��

�i � �� �i � � ��
�

The bias b is just treated as an additional parameter in the minimisation
process� though unrestricted in sign� To handle noise and outliers we can

��
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Fig� 	� Left �gure
 a linear ��insensitive loss function versus yi � w � xi � b� Right
�gure
 a quadratic ��insensitive loss function�

introduce a soft boundary�

min

�� mX
i��

�� mX
j��

�jK�xi�xj� � b

�A� �
mX
i��

	i

�� ����

subject to�

mX
j��

�jK�xi�xj� � b � �	i� 	i � � ����

and constraints ��
�� This method has been successfully used for detection
of abnormalities in blood samples and detection of faults in the condition
monitoring of ball�bearing cages 	
��

� Regression�

For real�valued outputs the learning task can also be theoretically motivated
from statistical learning theory� Instead of ��� we now use constraints yi �
w � xi � b � 
 and w � xi � b � yi � 
 to allow for some deviation 
 between
the eventual targets yi and the function f�x� � w � x � b� modelling the
data� We can visualise this as a band or tube of size ��� � �� around the
hypothesis function f�x� and any points outside this tube can be viewed as
training errors� The structure of the tube is de�ned by an 
�insensitive loss
function �Figure ��� As before we minimise jjwjj� to penalise overcomplexity�
To account for training errors we also introduce slack variables 	i� b	i for the
two types of training error� These slack variables are zero for points inside the
tube and progressively increase for points outside the tube according to the
loss function used� This general approach is called 
�SV regression 	��� and is
the most common approach to SV regression� though not the only one 	�
��

�




For a linear 
�insensitive loss function the task is therefore to minimise�

min

�
jjwjj� � C

mX
i��

	
	i � b	i


�
��
�

subject to

yi �w � xi � b� 
� 	i

�w � xi � b�� yi� 
� b	i ����

where the slack variables are both positive 	i� b	i � �� After kernel substitution
the dual objective function is�

W ��� b�� � mX
i��

yi��i � b�i�� 

mX
i��

��i � b�i�

�
�




mX
i�j��

��i � b�i���j � b�j�K�xi� xj� ����

which is maximised subject to

mX
i��

b�i �
mX
i��

�i ����

and�

� � �i � C � � b�i � C ����

Similarly a quadratic 
�insensitive loss function gives rise to�

min

�
jjwjj� � C

mX
i��

	
	�i �

b	�i 

�

����

subject to ����� giving a dual objective function �

W ��� b��� mX
i��

yi��i � b�i�� 

mX
i��

��i � b�i�

�
�




mX
i�j��

��i � b�i���j � b�j� �K�xi�xj� � �ij�C� ����

��



which is maximised subject to ����� The function modelling the data is then�

f�z� �
mX
i��

��i � b�i�K�xi� z� � b ��
�

We still have to compute the bias� b� and we do so by considering the KKT
conditions for regression� For a linear loss function prior to kernel substitution
these are�

�i �
� 	i � yi �w � xi � b�� �b�i

	

� b	i � yi �w � xi � b



�� ����

where w �
Pm

j�� yj��j � b�j�xj� and�

�C � �i� 	i��

�C � b�i� b	i�� ����

From the latter conditions we see that only when �i � C or b�i � C are
the slack variables non�zero� these examples correspond to points outside the

�insensitive tube� Hence from ���� we can �nd the bias from a non�bound
example with � � �i � C using b � yi�w �xi�
 and similarly for � � b�i � C
we can obtain it from b � yi�w �xi�
� Though the bias can be obtained from
one such example it is best to compute it using an average over all points on
the margin�

Apart from the formulations given here it is possible to de�ne other loss func�
tions giving rise to di�erent dual objective functions� In addition� rather than
specifying 
 a priori it is possible to specify an upper bound � �� � � � ��
on the fraction of points lying outside the band and then �nd 
 by optimising
over the primal objective function�

�



jjwjj� � C

�
�m
�

mX
i��

jyi � f�xi�j

�
��
�

with 
 acting as an additional parameter to minimise over 	
��� As for classi��
cation and novelty detection it is possible to formulate a linear programming
approach to regression with 	����

min

�
mX
i��

�i �
mX
i��

��
i � C

mX
i��

	i � C
mX
i��

	�i

�
����

��



subject to�

yi � 
� 	i �

�� mX
j��

	
��
j � �j



K�xi� xj�

�A � b � yi � 
� 	�i ����

Minimising the some of of the �i approximately minimises the number of
support vectors which favours sparse hypotheses with smooth functional ap�
proximations of the data� In this approach the kernel does not need to satisfy
Mercer�s condition 	����

� Algorithmic Approaches

So far the methods we have considered have involved linear or quadratic
programming� Linear programming can be implemented using column gen�
eration techniques 	
�� and many packages are available� e�g� CPLEX� For
quadratic programming there are also many applicable techniques including
quasi�Newton� conjugate gradient and primal�dual interior point methods 	����
Certain QP packages are readily applicable such as MINOS and LOQO� These
methods can be used to train an SVM rapidly but they have the disadvantage
that the kernel matrix is stored in memory� For small datasets this is practical
and QP routines are the best choice� but for larger datasets alternative tech�
niques have to be used� These split into two categories� techniques in which
kernel components are evaluated and discarded during learning and working

set methods in which an evolving subset of data is used� For the �rst category
the most obvious approach is to sequentially update the �i and this is the
approach used by the Kernel Adatron �KA� algorithm 	��� For binary classi��
cation �with no soft margin or bias� this is a simple gradient ascent procedure
on ���� in which �i � � initially and the �i are subsequently sequentially
updated using�

�i � �i� ��i� where �i � �i � �

���� yi
mX
j��

�jyjK�xi�xj�

�A����

and ���� is the Heaviside step function� The optimal learning rate � can be
readily evaluated� � � ��K�xi�xi� and a su�cient condition for convergence is
� � �K�xi�xi� � 
� With the decision function ��
� this method is very easy
to implement and can give a quick impression of the performance of SVMs
on classi�cation tasks� It is equivalent to Hildreth�s method in Optimisation
theory and can be generalised to the case of soft margins and inclusion of a
bias 	���� However� it is not as fast as most QP routines� especially on small
datasets�

��



Chunking and Decomposition� Rather than sequentially updating the �i

the alternative is to update the �i in parallel but using only a subset or chunk
of data at each stage� Thus a QP routine is used to optimise the lagrangian on
an initial arbitrary subset of data� The support vectors found are retained and
all other datapoints �with �i � �� discarded� A new working set of data is then
derived from these support vectors and additional datapoints which maximally
violate the storage constraints� This chunking process is then iterated until
the margin is maximised� Of course� this procedure may still fail because the
dataset is too large or the hypothesis modelling the data is not sparse �most
of the �i are non�zero� say�� In this case decomposition 	
�� methods provide
a better approach� these algorithms only use a �xed size subset of data with
the �i for the remainder kept �xed�

Decomposition and Sequential Minimal Optimisation �SMO�� The
limiting case of decomposition is the Sequential Minimal Optimisation �SMO�
algorithm of Platt 	
�� in which only two �i are optimised at each iteration�
The smallest set of parameters which can be optimised with each iteration is
plainly two if the constraint

Pm
i�� �iyi � � is to hold� Remarkably� if only two

parameters are optimised and the rest kept �xed then it is possible to derive
an analytical solution which can be executed using few numerical operations�
The method therefore consists of a heuristic step for �nding the best pair
of parameters to optimise and use of an analytic expression to ensure the
lagrangian increases monotonically� For the hard margin case the latter is easy
to derive from the maximisation of �W with respect to the additive corrections
a� b in �i � �i� a and �j � �j � b� �i �� j�� For the L� soft margin care must
be taken to avoid violation of the constraints ���� leading to bounds on these
corrections� The SMO algorithm has been re�ned to improve speed 	��� and
generalised to cover the above three tasks of classi�cation 	
��� regression 	���
and novelty detection 	���� Due to its decomposition of the learning task and
speed it is probably the method of choice for training SVMs�

Model Selection� Apart from the choice of kernel the other indeterminate
is the choice of the kernel parameter �e�g� � in ����� The kernel parameter
can be found using cross�validation if su�cient data is available� However�
recent model selection strategies can give a reasonable estimate for the kernel
parameter without use of additional validation data� As a �rst attempt we
can use a theorem stating that the generalisation error bound is reduced as
the margin � is increased� This theorem gives the upper bound as R��m��

where R is the radius of the smallest ball containing the training data� At an
optimum of ���� it is possible to show that �� � ��

P
i �

�
i �where �

�
i are the

values of �i at the optimum�� Also for RBF kernels R 	 � �the data lies on
the surface of hypersphere since ��x� � ��x� � K�x�x� � � from ���� so the
bound can be written

Pm
i�� �

�
i �m� Hence an estimate for � can be found by

sequentially training SVMs on the same dataset at successively larger values
of �� evaluating the bound from the ��i for each case and choosing that value

��



of � for which the bound is minimised� This method 	�� will give a reasonable
estimate if the data is spread evenly over the surface of the hypersphere but it
is poor if the data lie in a �at ellipsoid� for example� since the radius R would
be in�uenced by the largest deviations� More re�ned estimates therefore take
into account the distribution of the data�

One approach 	�� is to theoretically rescale data in feature space to compen�
sate for uneven distributions� A more complex strategy along these lines has
also been proposed by Sch�olkopf et al 	�
� which leads to an algorithm which
has performed well in practice for a small number of datasets� The most eco�
nomical way to use the training data is to use a leave�one�out procedure 	������
As an example� we consider a recent scheme proposed by Joachims 	���� In
this approach the number of leave�one�out errors of an L��norm soft margin
SVM is bounded by jfi � �
�iB

� � 	i� � �gj�m where �i are the solutions of
the optimisation task in ������ and B� is an upper bound on K�xi� xi� with
K�xi� xj� � � �we can determine 	i from yi�

P
j �jK�xj� xi��b� � ��	i�� Thus�

for a given value of the kernel parameter� the leave�one�out error is estimated
from this quantity �the system is not retrained with datapoints left out� the
bound is determined using the ��i from the solution of �������� The kernel pa�
rameter is then incremented or decremented in the direction needed to lower
the bound� This method has worked wekk on classi�cation of text 	����

� Further techniques based on kernel representations�

So far we have considered methods based on linear and quadratic program�
ming� Here we shall consider further approaches which may utilise general
nonlinear programming or other techniques� In particular� we will consider
approaches to two issues� how to improve generalisation performance over
standard SVMs and how to create hypotheses which are sparse�

For the dual of input space datapoints become hyperplanes and separating hy�
perplane becomes points� Version space is the space of all hypotheses �points�
consistent with the data and this space is bounded by the set of hyperplanes
representing the data� An SVM solution can be viewed as the centre of the
largest inscribable hypersphere in version space� the support vectors corre�
spond to those examples with hyperplanes tangentially touching this hyper�
phere �Figure ��� If version space is aspherical then the centre of the largest
inscribed hypersphere does not appear to be the best choice� Indeed� a better
choice would be the Bayes point� approximately the centre of mass of version
space� Bayes Point Machines �BPMs� construct a hypothesis based on this cen�
tre of version space and this choice can be justi�ed by theoretical arguments
	

����
�� in addition to having a geometric appeal�

��



Fig� �� The centre of mass of version space ��� and the centre of the largest inscribed
sphere ��� in an elongated version space

In one approach the centre of mass is determined using a kernelised billiard
algorithm in which version space is traversed uniformly and an estimate of the
centre of mass is repeatedly updated� For a large majority of datasets version
space diverges from sphericality and the BPM outperforms an SVM at sta�
tistically signi�cant levels� For arti�cial examples with very elongated version
spaces the generalisation error of a BPM can be half that of an SVM 	����
��
However� current implementations of BPMs have a number of drawbacks� the
algorithm can be slow in execution and better mechanisms for a soft boundary
�imitating a soft margin� need to be found �the implementation in 	�
���� also
did not include a bias��

Rather than using the centre of mass of version space an alternative might
be to use a hypothesis that lies towards the centre of this space but which is
easier to compute� This could be achieved by using repulsive potentials ����
favouring points towards the centre of version space 	
��� As an example we
could use�

min���� �

�
mX
i��

ln ��iK�xi� xj� � b�

�
����

subject to�

�




mX
i��

��i � � ����

which is the basis of the Analytic Center Machine 	�
�� The gradient and
Hessian for ���� can be readily evaluated and the algorithm appears to perform

��



well in practice achieving a test error of ����� on a dataset for which an SVM
gave ����
�� for example�

The Bayes Point Machine may exhibit good generalisation but it has the dis�
advantage that the hypothesis is dense i�e� nearly all datapoints have �i �� �
and hence they appear in the �nal hypothesis� Ideally we would also like to
derive kernel classi�ers or regression machines which give sparse hypothe�
ses using a minimal number of datapoints� The most e�ective means of ob�
taining sparse hypotheses remains the object of research but an excellent
scheme is the Relevance Vector Machine of Tipping 	���� Using the function
f�z� �

Pm
i�� �iK�z� xi� � b with weights �i� b to model the data� a Bayesian

prior is de�ned over these parameters favouring smooth functions� From Bayes
rule a posterior over the weights can be obtained and thence a marginal like�
lihood or evidence� Iterative maximisation of this evidence suggests suitable
kernel values for pruning� creating an eventual hypothesis which is sparse in
the number of datapoints used� Experiments show that this approach can
sometimes give hypotheses which only use a few percent of the available data
	����

	 Conclusion

The approach we have considered is very general in that it can be applied
to a wide range of machine learning tasks and can be used to generate many
possible learning machine architectures �RBF networks� feedforward neural
networks� through an appropriate choice of kernel� Above all� kernel methods
have been found to work well in practice� The subject is still very much un�
der development but it can be expected to develop as an important tool for
machine learning and applications�
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