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On the Support Vector Machine

Yi Lin

University of Wisconsin, Madison

Abstract

Classification is a fundamental problem at the intersection of machine learning

and statistics. Machine learning methods have enjoyed considerable empirical success.

However, they often have an ad hoc quality. It is desirable to have hard theoretical

results which might highlight specific quantitative advantages of these methods. The

statistical methods often tackle the classification problem through density estimation

or regression. Theoretical properties of these statistical methods can be established,

but only under the assumption of a fixed order of smoothness. Whether these methods

work well when the assumptions are violated is not clear.

The support vector machine (SVM) methodology is a rapidly growing area in ma-

chine learning, and is receiving considerable attention in recent years. The SVM has

proved highly successful in a number of practical classification studies. In this paper we

show that the SVM enjoys excellent theoretical properties which explain the good per-

formance of the SVM. We show that the SVM approaches the the theoretical optimal

classification rule (the Bayes rule) in a direct fashion, and its expected misclassification

rate quickly converges to that of the Bayes rule. The results are established under very

general conditions allowing discontinuity. They testify to the fact that classification is

easier than density estimation and regression, and show that the SVM works by taking

advantage of this. The results pinpoint the exact mechanism behind the SVM, and

clarify the advantage and limitation of the SVM, thus give insights on how the SVM

can be extended systematically.

Key Words and Phrases: Support Vector Machine, Bayes Rule, Classification, Sobolev

Hilbert Space, Reproducing Kernel, Reproducing Kernel Hilbert Space, Regularization Method.
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1 Introduction

In the classification problem, we are given a training data set of n subjects, and for each

subject i ∈ {1, 2, ..., n} in the training data set, we observe an explanatory vector xi ∈
Rd, and a label yi indicating one of several given classes to which the subject belongs.

The observations in the training set are assumed to be i.i.d. from an unknown probability

distribution P (x, y), or equivalently, they are independent random realizations of the random

pair (X,Y ) that has cumulative probability distribution P (x, y). The task of classification

is to derive from the training set a good classification rule, so that once we are given the x

value of a new subject, we can assign a class label to it. One common criterion for accessing

the quality of a classification rule is the generalization error rate (expected misclassification

rate), though other loss functions are also possible. The situation where there are only

two classes and where the misclassification rate is used as the criterion is most commonly

encountered in practice. In the following we concentrate on this situation. This binary

classification problem (or pattern recognition) has been studied by many authors. See, for

example, Devroye, Györfi and Lugosi (1996) and Vapnik (1995) and the references cited

therein.

In this paper, the two classes will be called the positive class and the negative class, and

will be coded as +1 and −1 respectively. Any classification rule η can then be seen as a

mapping from Rd to {−1, 1}. Denote the generalization error rate of a classification rule

η as R(η). Then R(η) =
∫ |y−η(x)|

2
dP . It is often the case that η(·) = sign[g(·)] for some

real valued function g. That is, the rule η assigns the subject to the positive class if g(x)

is positive, and to the negative class otherwise. In this case, we will use the notations R(η)

and R(g) interchangeably.

1.1 The Bayes Rule

In the classification problem, if we knew the underlying probability distribution P (x, y),

we could derive the optimal classification rule with respect to any given loss function. This

optimal rule is usually called the Bayes rule. For the binary classification problem, the Bayes
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rule that minimizes the generalization error rate is

η∗(x) = sign[p(x) − 1/2], (1)

where

p(x) = Pr{Y = 1|X = x}

is the conditional probability of the positive class at a given point x. Let R∗ = R(η∗). Then

R∗ is the minimal possible value for R(·).
Let g+(x) be the probability density function of X for the positive population, that is,

the conditional density of X given Y = 1. Let g−(x) be the probability density function of

X for the negative population. The unconditional (“prior”) probabilities of the positive class

and negative class in the target population are denoted by π+ and π− respectively. Then

p(x) can be obtained by the Bayes formula

p(x) =
π+g+(x)

π+g+(x) + π−g−(x)
(2)

1.2 Common classification methods and the SVM

The statistical approach to classification estimates the conditional class probability p(x) (or

equivalently, the log odds log[p(x)/(1 − p(x))]). Once an estimate of p(x) is obtained, we

can plug it in (1) to get an approximate Bayes rule. The estimation is often done by logistic

regression; or by estimating the densities g+(x) and g−(x), and then using (2). It is possible

to establish the statistical properties of these methods by making use of the extensive existing

results on density estimation and regression. However, these methods posit a fixed order of

smoothness assumptions on the conditional probability function p(x) or the densities g+(x)

and g−(x). This leaves the applicability of these methods in doubt since we never know such

smoothness to be the case in practice.

The machine learning community places great emphasis on algorithms and handling large

data sets. Many machine learning methods, such as the neural network, the classification

tree, and recently the support vector machine, have enjoyed remarkable empirical success,

and have attracted tremendous interest. The machine learning methods are often motivated

by their heuristic plausibility, and justified by empirical evidence rather than hard theoretical
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results that might demonstrate specific quantitative advantages of such methods. In order

to have a clear understanding of where and when these methods work well, it is desirable to

have theoretical results that pinpoint the advantages and limitations of these methods.

The support vector machine is a new addition to the machine learning toolbox. It was

first proposed in Boser, Guyon and Vapnik (1992), and is going through rapid development.

The SVM is best developed in the binary classification situation, even though several studies

attempted to use the SVM for classifying multiple classes. Since the statistics community is

largely unfamiliar with the SVM, in the following we give a brief description of the derivation

of the SVM, starting from the simple linear support vector machine and moving on to

the nonlinear support vector machine. For a more detailed tutorial on the support vector

machine, see Burges (1998).

The SVM is motivated by the intuitive geometric interpretation of maximizing the mar-

gin. When the two classes of points in the training set can be separated by a linear hy-

perplane, it is natural to use the hyperplane that separates the two groups of points in the

training set by the largest margin. This amounts to the hard margin linear support vector

machine: Find w ∈ Rd, b ∈ R, to minimize ‖w‖2, subject to

xi · w + b ≥ +1 for yi = +1; (3)

xi · w + b ≤ −1 for yi = −1; (4)

Once such w and b are found, the SVM classification rule is sign(w · x + b).

When the points in the training data set are not linearly separable, constraints (3) and

(4) can not be satisfied simultaneously. We can introduce nonnegative slack variables ξi’s to

overcome this difficulty. This results in the soft margin linear support vector machine: Find

w ∈ Rd, b ∈ R, and ξi, i = 1, 2, ..., n, to minimize 1/n
∑

i ξi + λ‖w‖2, under the constraints

xi · w + b ≥ +1 − ξi for yi = +1; (5)

xi · w + b ≤ −1 + ξi for yi = −1; (6)

ξi ≥ 0, ∀i.
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Here λ is a control parameter to be chosen by the user. Notice (5) and (6) can be combined

as

ξi ≥ 1 − yi(xi · w + b).

The nonlinear support vector machine maps the input variable into a high dimensional

(often infinite dimensional) feature space, and applies the linear support vector machine in

the feature space. It turns out that the computation of this linear SVM in the feature space

can be carried out in the original space through a (reproducing) kernel trick. Therefore we do

not really need to know the feature space and the transformation to the feature space. The

nonlinear support vector machine with kernel K is equivalent to a regularization problem

in the reproducing kernel Hilbert space (RKHS) HK : Find f(x) = h(x) + b with h ∈ HK ,

b ∈ R, and ξi, i = 1, 2, ..., n, to minimize

1

n
(
∑

i

ξi) + λ‖h‖2
HK

, (7)

under the constraints

ξi ≥ 1 − yif(xi), (8)

ξi ≥ 0, ∀i. (9)

Once the solution f̂ is found, the SVM classification rule is sign(f̂).

Commonly used kernels include Gaussian kernels, spline kernels, and polynomial kernels.

Wahba (1990) contains some detailed introduction to reproducing kernels and reproducing

kernel Hilbert spaces.

The theory of RKHS ensures that the solution to (7), (8), and (9) lies in a finite dimen-

sional space, even when the RKHS HK is of infinite dimension. See Wahba (1990). Hence

the SVM problem (7), (8), and (9) becomes a mathematical programming problem in a

finite dimensional space. See Wahba, Lin and Zhang (1999). The computation of the SVM

is often done with the dual formulation of this mathematical programming problem. This

dual formulation is a quadratic programming problem with a simple form. It turns out that

the SVM solution enjoys certain sparsity: usually the final solution depends only on a small

proportion of the data points. These points are called support vectors. This sparsity can be

exploited for fast computation, and the SVM has been applied to very large datasets. See,
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for example, Vapnik (1979), Osuna, Freund and Girosi (1997), Platt (1999), for some basic

ideas of fast computation of the SVM.

Denote ln(f) = 1
n

∑n
i=1[1 − yif(xi))]+. Here a+ = a if a ≥ 0, and a+ = 0 if a < 0. The

limit functional of ln(f) is l(f) =
∫
[1−yf(x)]+dP . We can see that (7), (8), (9) is equivalent

to minimizing

ln(f) + λ‖h‖2
HK

. (10)

Several authors have studied the generalization error rate of the SVM, See Vapnik (1995),

and Shawe-Taylor and Cristianini (1998). These authors established bounds on generaliza-

tion error based on VC dimension, fat shattering dimension, and the proportion of the

training data achieving certain margin. However, the VC dimension or the fat shattering

dimension of the nonlinear SVM is often very large, even infinite. Hence the bounds estab-

lished are often very loose, or even trivial (larger than 1), and do not provide a satisfactory

explanation as to why the SVM often has good generalization performance.

Due to the heuristic fashion in which the SVM is derived, it has not been clear how the

SVM is related to Bayes rule, and how the generalization error rate of the SVM compares

with the minimal possible value R∗. Some confusions exist in practice on what to do with

the SVM when the appropriate measure of risk is not the expected misclassification rate, and

how the SVM can be used for multi-class classification. In this paper, we clarify matters by

pinpointing the exact mechanism behind the SVM. This will enable us to extend the SVM

methodology and develop new algorithms based on the basic ideas of the SVM.

2 Statements of Our Results

From (10) we see the nonlinear SVM is another example of the penalized method very

often used in statistics. Lin (1999) showed that the minimizer of l(f) is sign[p(x) − 1/2],

which is exactly the Bayes rule. This strongly suggests that the SVM solution is aiming at

approaching the Bayes rule. Lin (1999) demonstrated with simulations that with Gaussian

kernel and spline kernel the solution to (10) approaches to the function sign[p(x) − 1/2].

One point worth mentioning is that the function sign[p(x) − 1/2] is usually discontinuous
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and does not belong to any RKHS commonly used in practice, while the solution to (10) is

in the RKHS HK . This is different from the situation of many penalized methods.

In this paper we consider the first order spline kernel in the situation d = 1. The simple

reproducing kernel under consideration facilitates the proofs. However, in principle the

same line of argument can be applied to the SVM with other commonly used reproducing

kernels. We show that under very general conditions without any smoothness assumption,

the solution to (10) converges to sign[p(x) − 1/2]. We further show that under very mild

boundary conditions on p(x), the generalization error rate of the SVM converges to R∗ at

a certain rate. These conditions are much weaker than the usual smoothness conditions

imposed in regression and density estimation, and can easily be satisfied by nonsmooth,

even discontinuous functions. Also the implementation of the SVM does not require any a

priori information of the conditions.

Assumption 1 The density d(x) of X is supported on [−1, 1], and it is bounded away from

zero and infinity in this interval. That is, there exists constants D2 > D1 > 0, such that

D1 ≤ d(x) ≤ D2 for all x ∈ [−1, 1].

The first order Sobolev Hilbert space of functions on any interval [b1, b2], denoted by

H1[b1, b2], is defined by

H1[b1, b2] = {f |f abs. cont.; f ′ ∈ L2[b1, b2]},

with the Sobolev Hilbert norm

‖f‖2 =
∫ b2

b1
f2dx +

∫ b2

b1
(f ′)2dx

In this paper we will write H1[−1, 1] as simply H1. It is well known that this is a RKHS

and the corresponding RK is called the first order spline kernel. With this RK, (10) becomes

min
f∈H1

ln(f) + λ
∫ 1

−1
(f ′)2dx, (11)

or equivalently,

min
f∈H1

ln(f) subject to
∫ 1

−1
(f ′)2dx ≤ M. (12)
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Here λ or M is the smoothing parameter. Let the solution to (11) be denoted by f̂ . Let the

solution to (12) be denoted by f̂M . We will allow the smoothing parameters to vary with

the sample size n. In this paper, any function with a hat, such as f̂ and f̂M , are random

(depending on the training sample). We use the notation Ec for the expectation conditional

on the training sample (Xi, Yi), i = 1, 2, ..., n. Then Ec[ĝ(X)] =
∫

ĝ(x)dP for any random

function ĝ depending on the training sample.

Theorem 1 Under Assumption 1, suppose p(x) is bounded away from 1/2 from below by

some positive constant D3 in an interval [x0 − δ, x0 + δ]. Then there exists a positive number

Λ depending only on D3 and δ, such that for any fixed λ < Λ, or for any fixed sequence λ(n)

going to zero, we have

|sign[p(x0) − 1/2] − f̂(x0)| = Op(n
−1/3λ−2/3).

The same result is valid for p(x) bounded away from 1/2 from above.

The result is uniform over all the functions p(x) and points x0 satisfying that p(x) is

bounded from below by 1/2+D3 (or from above by 1/2−D3) in the interval [x0 − δ, x0 + δ].

Theorem 1 shows that the SVM solution converges to the Bayes rule sign[p(x)− 1/2]. This

uncovers the mechanism by which the SVM works. Notice that f̂ is absolutely continuous,

whereas sign[p(x) − 1/2] is usually discontinuous.

To investigate the global performance of the SVM, we consider the generalization error

rate. For any classification rule η, it is natural to access its quality by looking at how fast

R(η) converges to the minimal possible value R∗. The convergence R(η) → R∗ was proved

for various classification rules (not including the SVM though). Furthermore, certain bounds

on the difference E(R(η)−R∗) are known for finite sample sizes. See, for example, Devroye,

Györfi and Lugosi (1996) and the references therein.

For the rate of such convergence, the only studies in the literature that we know of are

that of Marron (1983) and Mammen and Tsybakov (1999). Under smoothness assumptions

on the densities g+(x) and g−(x), Marron (1983) proved that the optimal rates of convergence

are the same as those of the mean integrated squared error in density estimation. He also

showed that under these assumptions the density estimation approach to the classification
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problem is asymptotically optimal. The error criterion he used is the integrated (over all

prior probabilities q from 0 to 1) difference Rq(η)−R∗
q , where Rq(·) and R∗

q are the general-

ization error rate when π+ = q. Mammen and Tsybakov (1999) imposes conditions on the

decision region and assumes that the decision region belongs to a known class G of possible

“candidate” regions. The δ-entropy with bracketing of the class G is assumed to be finite and

varies with δ at a certain rate. They studied the asymptotic properties of direct minimum

contrast estimators and sieve estimators, and found the optimal rate of R(η)−R∗ for classes

of boundary fragments. The rates they obtained are faster than those in Marron (1983).

They concluded that direct estimation procedures such as the empirical risk minimization

can achieve better performance in terms of the generalization error rate than the density

estimation based method. However, the direct minimum contrast estimators and sieve esti-

mators are hard to implement and need a priori knowledge of the class G. Our second result

(to be stated) is in spirit closer to the results in Mammen and Tsybakov (1999), but we

study the asymptotic properties of the SVM, which do not assume a priori knowledge of a

candidate class with finite δ-entropy (with bracket).

For any function g, if we classify according to the sign of g(x), then it is easy to see the

misclassification rate R(g) is equal to l[sign(g)]/2. By Theorem 1 we see that sign(f̂) ≈ f̂ .

So l(f̂) ≈ 2R(f̂). Therefore it is also reasonable to use l(·) to assess the performance of the

SVM. In fact, l(·) is called the GCKL in Wahba, Lin, and Zhang (1999), and was used to

adaptively tune the smoothing parameter for the SVM. It might be advantageous in many

situations to consider l(·) rather the R(·), since l(·) is continuous and convex, whereas R(·)
is discontinuous and not convex. It is shown in Lin (1999) that the Bayes rule η∗ is the

minimizer of l(f) over all function f . In this paper we also consider how fast the GCKL of

the SVM converges to l(η∗).

Before we can state our second result, we need to characterize the behavior of p(x) at

its cross points with 1/2. We say a point r is a positive cross point if there exists a positive

number a > 0, such that p(x) > 0 in (r, r + a] and p(x) < 0 in [r − a, r). Negative cross

points are defined likewise.

Assumption 2 The function p(x) crosses 1/2 finite many (k) times, that is, sign[p(x)−1/2]
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has finite many pieces; and there exists ζ > 0 and D4 > 0 such that for any cross point rj,

j = 1, 2, ..., k, there exists αj ≥ 0, and D6j > D5j > 0, satisfying

D5j|x − rj|αj ≤ |p(x) − 1/2| ≤ D6j|x − rj|αj , ∀x ∈ (rj − ζ, rj + ζ), (13)

and p(x) is bounded away from 1/2 by D4 when x is more than ζ away from all the cross

points. Denote maxj D6j = D̄, minj D5j = D, maxj αj = ᾱ, and minj αj = α.

It falls right out from this assumption that k ≤ 2/ζ. Assumption 2 is related to the

condition (4) in Mammen and Tsybakov (1999). Assumption 2 could, in particular, be sat-

isfied by nonsmooth, even discontinuous functions. Notice also that we allow the possibility

that some αj is zero. This represents possible discontinuity at the cross points. Notice the

implementation of the SVM does not require any a priori information in Assumption 2.

We will consider the setup (12) and its solution f̂M in our second result for technical

convenience. For any θ > 0, denote ρ(θ) = min(α +1− θ, θ/ᾱ, (α +2)/(ᾱ+2)). (θ/ᾱ = +∞
if ᾱ = 0.)

Theorem 2 Under Assumption 1 and Assumption 2, for any fixed θ > 0, suppose M(n) ∼ nt

for some 0 < t ≤ 2/[3(1 + ρ(θ))], then for any fixed s > 0, there exists finite constant D(s)

depending on s, and N > 0, such that for any n > N ,

nγsE[l(f̂M) − l(η∗)]s ≤ D(s); (14)

nγsE[R(f̂M) − R(η∗)]s ≤ D(s); (15)

where γ = min{[t(ρ(θ) + θ)], 2/3− [t(1 + θ)]/3}. The constants D(s) and N depend on p(x)

only through ζ, D̄, D, D4, and ᾱ.

For example, if ᾱ = 0, θ = 1/2, then ρ(θ) = 1/2, and γ = 4/9 with t = 4/9; if ᾱ = α = 2,

θ = 2, then ρ(θ) = 1, and γ = 1/2 with t = 1/6.

The proof of Theorem 2 uses general results from empirical process theory, and follows

an argument employed in the proof of Theorem 1 of Mammen and Tsybakov (1999). One

complication is that the L2 norm is not readily bounded by difference measured by l(·). We

derive (29) to overcome this difficulty.
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3 Discussion

The SVM makes no a priori assumption of a fixed order of smoothness or a fixed class of pos-

sible “candidate” decision regions. It easily accommodates discontinuity. Its generalization

error rate goes to that of the Bayes rate with a fast rate of convergence.

The reason why we can obtain results under very general conditions is that the function

sign[p(x) − 1/2], though may be discontinuous, is often simpler than the function p(x) or

g+(x) and g−(x). The SVM takes advantage of this fact by aiming directly at the simpler

function sign[p(x)− 1/2] which is more directly related to the decision rule. Several authors

have observed that classification is easier than regression and density estimation. See De-

vroye, Györfi and Lugosi (1996) and Mammen and Tsybakov (1999). Our results further

confirm this.

It is important to understand the mechanism behind the SVM. The SVM implement

the Bayes rule in an interesting way: Instead of estimating p(x), it estimates sign[p(x) −
1/2]. This has advantages when our goal is binary classification with minimal expected

misclassification rate. However, this also means that in some other situations the SVM

needs to be modified, and should not be used as is.

In practice it is often the case that the costs of false positive and false negative are

different. It is also possible that the fraction of members of the classes in the training

set is different than those in the general population (sampling bias). In such nonstandard

situations the Bayes rule that minimizes the expected misclassification cost can be expressed

as sign[p(x) − c], where c ∈ (0, 1) is not equal to 1/2. Hence the SVM as is will not

perform optimally in this situation, and there is no direct way of getting sign[p(x)− c] from

sign[p(x) − 1/2]. Lin, Lee, and Wahba (2000) contains some extension of the SVM to such

nonstandard situations.

Multi-class (N -class) classification problem arises naturally in practice. The Bayes rule

in this case assigns the class label corresponding to the largest conditional class probability.

Some authors suggested training N one-versus-rest SVMs and taking the class for a test sub-

ject to be that corresponding to the largest value of the classification functions. Our results

show that this approach should work well when one of the conditional class probabilities is
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larger than 1/2, (there is a majority class), but will not approach the Bayes rule when there

is no majority class.

4 The Proof of Our Results

The notation an ∼ bn means c1an ≤ bn ≤ c2an for all n, and some positive constants c1 and

c2. Any constants here and later in the proofs are generic positive constants not depending

on n, λ, M , or the sample, and may depend on p(x) and d(x) only through D1, D2, D3, δ,

ζ, D4, D̄, D, and ᾱ. Consecutive appearances of c without subscript may stand for different

positive constants.

Lemma 4.1 Under Assumption 1, suppose p(x) be bounded away from 1/2 from below by

some positive constant D3 in [x0 − δ, x0]. For any fixed number a ∈ [−1, 1], let fa be the

solution to the variational problem:

min
f∈H1[x0−δ,x0]

f(x0−δ)=a

E[(1 − Y f(X))+1{x0−δ≤X≤x0}] + λ
∫ x0

x0−δ
(f ′)2dx, (16)

then when λ is small enough, there exists ε ∈ [0, δ), such that ε ∼ λ1/2(1− a)1/2, and fa = 1

for x ∈ [x0 − δ + ε, x0]. Also,

∫ x0−δ+ε

x0−δ
(f ′

a)
2dx ∼ λ−1/2(1 − a)3/2

∫ x0−δ+ε

x0−δ
(1 − fa)dx ∼ λ1/2(1 − a)3/2

E[(1 − Y fa(X))+1{x0−δ≤X≤x0}] + λ
∫ x0

x0−δ
(f ′

a)
2dx − E[(1 − Y )+1{x0−δ≤X≤x0}] ∼ λ1/2(1 − a)3/2

Proof: Without loss of generality, we assume x0 = 0.

It is easy to see that fa(x) ∈ [−1, 1], ∀x ∈ [−δ, 0]. Otherwise the truncation of fa into

[−1, 1] would still be in H1[−δ, 0], and has a smaller value for (16). Now let us restrict our

attention to functions satisfying |f(x)| ≤ 1, ∀x ∈ [−δ, 0]. Under this constraint we have

E{[1 − Y f(X)]+1{−δ≤X≤0}} + λ
∫ 0
−δ(f

′)2dx

= E[(1 − Y f(X))1{−δ≤X≤0}] + λ
∫ 0
−δ(f

′)2dx

=
∫ 0
−δ d(x)dx − ∫ 0

−δ g(x)f(x)dx + λ
∫ 0
−δ(f

′)2dx, (17)
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where g(x) = d(x)[2p(x) − 1].

From (17) we can see that fa must be monotone increasing. Otherwise suppose fa(x1) >

fa(x2), −δ ≤ x1 < x2 ≤ 0. Consider the function defined as

f̃a(x) =




fa(x) : x ∈ [−δ, x1]

max{fa(x1), fa(x)} : x ∈ [−x1, 0].

Then f̃a ∈ H1[−δ, 0], f̃a(−δ) = a, |f̃a| ≤ 1 for any x ∈ [−δ, 0], and f̃a gives a smaller value

of (17).

Let G(x) =
∫ x
0 g(t)dt. Then G(0) = 0, G(x) is continuous and strictly monotone increas-

ing in [−δ, 0]. Integrating by parts, we have (17) is the same as

∫ 0
−δ d(x)dx + aG(−δ) +

∫ 0
−δ G(x)f ′(x)dx + λ

∫ 0
−δ(f

′)2dx

= λ
∫ 0
−δ[f

′ + G/(2λ)]2 − ∫ 0
−δ G2/(4λ)dx +

∫ 0
−δ d(x)dx + aG(−δ)

From the above we know ha = f ′
a solves the problem

min
h∈L2[−δ,0],

h≥0

λ
∫ 0

−δ
[h + G/(2λ)]2,

subject to the constraint

1 − a −
∫ 0

−δ
h(x) ≥ 0. (18)

Since p(x) ≥ 1/2 + D3, and D1 ≤ d(x) ≤ D2, by the definition of G(·), there exists a

positive constant Λ, such that for any λ ≤ Λ, we have

∫ 0

−δ
−G/(2λ)dx > 2 ≥ 1 − a. (19)

So the constraint (18) is not trivial. Introducing Lagrange multiplier µ > 0 for the constraint

(18), we get

λ
∫ 0

−δ
[h + G/(2λ)]2dx − µ[1 − a −

∫ 0

−δ
h(x)dx]

= λ
∫ 0

−δ
(f ′ + (G + µ)/(2λ))2dx − µ(1 − a) −

∫ 0

−δ
(µ2 + 2Gµ)/(4ᾱ).

So ha = [−(G + µ)/(2λ)]+. We also have 1 − a − ∫ 0
−δ ha(x) = 0, which means fa(0) = 1.
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Recalling that −G is continuous, strictly decreasing to 0 on [−δ, 0]. Let −G crosses µ at

−δ + ε, where −δ < ε < 0. Then

fa(x) = 1 x ∈ [−δ + ε, 0]

fa(x) strictly increases from a to 1 in [−δ,−δ + ε]. (20)

By the definition of g(x) and G(x), there exists positive constants c1 and c2, such that

c1 < g(x) = G′(x) < c2, ∀x ∈ [−δ, 0]. It is easy to see that 2λ(1 − a) =
∫ 0
−δ 2λha =∫ −δ+ε

−δ (−G−µ)dx is in between 1/2c1ε
2 and 1/2c2ε

2. Therefore ε is in between 2c
−1/2
2 λ1/2(1−

a)1/2 and 2c
−1/2
1 λ1/2(1 − a)1/2.

By the definition of ε, we have c1(−δ + ε − x)/(2λ) ≤ ha(x) ≤ c2(−δ + ε − x)/(2λ),

x ∈ [−δ,−δ + ε]. So ∫ −δ+ε

−δ
h2

adx ∈ (c2
1/12ε3λ−2, c2

2/12ε3λ−2),

∫ −δ+ε

−δ
g(x)(1 − fa(x))dx ∈ (c2

1/12ε3λ−1, c2
2/12ε3λ−1).

E[(1 − Y fa(X))+1{−δ≤X≤0}] + λ
∫ 0
−δ(f

′
a)

2dx − E[(1 − Y )+1{−δ≤X≤0}]

=
∫ −δ+ε
−δ g(x)(1 − fa(x))dx + λ

∫ −δ+ε
−δ h2

adx

∈ (c2
1ε

3/(6λ), c2
2ε

3/(6λ))

⊂ (4/3λ1/2(1 − a)3/2c2
1c

−3/2
2 , 4/3λ1/2(1 − a)3/2c2

2c
−3/2
1 ).

�.

Proof of Theorem 1: Without loss of generality, assume x0 = 0, and that p(x) is bounded

from 1/2 from below. It is easy to see that |f̂ | ≤ 1. Denote a = f̂(−δ), b = f̂(δ), and

Fδ = {f ∈ H1[−δ, δ], f(−δ) = a, f(δ) = b}. Consider problems

min
f∈Fδ

1/n
n∑

i=1

[(1 − Yif(Xi))+1−δ≤Xi≤δ] + λ
∫ δ

−δ
(f ′)2dx (21)

min
f∈Fδ

E[(1 − Y f(X))+1{−δ≤X≤δ}] + λ
∫ δ

−δ
(f ′)2dx (22)

Then the restriction of f̂ to [−δ, δ] is a solution to (21). Let f̄δ be the solution to (22), then

by Lemma 4.1, for small enough λ, we have f̄δ(x) = 1,∀x ∈ (−δ + ε1, δ − ε2); and f̄δ strictly

14



increases from a to 1 in [−δ,−δ+ε1], strictly decreases from 1 to b in [δ−ε2, δ], where ε1 < δ,

and ε2 < δ.

Denote 1− f̂(0) by ω, and Fω
δ = {f ∈ H1[−δ, δ], f(−δ) = a, f(δ) = b, f(0) = 1−ω}. Let

f̄δω be the solution to

min
f∈Fω

δ

E{[1 − Y f(X)]+1{−δ≤X≤δ}} + λ
∫ δ

−δ
(f ′)2dx (23)

From Lemma 4.1 we can see that for λ small enough, we have f̄δω(x) = 1,∀x ∈ (−δ +

ε1,−ε3)∪ (ε4, δ− ε2); and f̄δω strictly increases from a to 1 in [−δ,−δ + ε1], strictly decreases

from 1 to b in [δ − ε2, δ], strictly decreases from 1 to 1− ω in (−ε3, 0), and strictly increases

form 1 − ω to 1 in (0, ε4); and f̄δω is identical to f̄δ other than on [−ε3, ε4]. And

Ec[(1−Y f̄δω(X))+1{−δ≤X≤δ}]+λ
∫ δ

−δ
(f̄ ′

δω)2dx−Ec[(1−Y f̄δ(X))+1{−δ≤X≤δ}]−λ
∫ δ

−δ
(f̄ ′

δ)
2dx ≥ c3λ

1/2ω3/2

Since f̄δω is the solution to (23), we get

Ec[(1−Y f̂(X))+1{−δ≤X≤δ}]+λ
∫ δ

−δ
(f̂ ′)2dx−Ec[(1−Y f̄δ(X))+1{−δ≤X≤δ}]−λ

∫ δ

−δ
(f̄ ′

δ)
2dx ≥ c3λ

1/2ω3/2.

(24)

On the other hand, the left hand side of (24) is equal to

−1/n
∑n

i=1[(1 − Yif̂(Xi))1{−δ≤Xi≤δ}] + Ec[(1 − Y f̂(X))1{−δ≤X≤δ}]

+1/n
∑n

i=1[(1 − Yif̂(Xi))+1{−δ≤Xi≤δ}] + λ
∫ δ
−δ(f̂

′)2dx

−Ec[(1 − Y f̄δ(X))1{−δ≤X≤δ}] − λ
∫ δ
−δ(f̄

′
δ)

2dx

≤ −1/n
∑n

i=1[(1 − Yif̂(Xi))1{−δ≤Xi≤δ}] + Ec[(1 − Y f̂(X))1{−δ≤X≤δ}]

+1/n
∑n

i=1[(1 − Yif̄δ(Xi))+1{−δ≤Xi≤δ}] + λ
∫ δ
−δ(f̄

′
δ)

2dx

−Ec[(1 − Y f̄δ(X))1{−δ≤X≤δ}] − λ
∫ δ
−δ(f̄

′
δ)

2dx

= 1/n
∑n

i=1[(Yi(f̂ − f̄δ)(Xi))1{−δ≤Xi≤δ}] − Ec[(Y (f̂ − f̄δ)(X))1{−δ≤X≤δ}]

= 1/n
∑n

i=1[(Yiq(Xi))1{−δ≤Xi≤δ}] − Ec[(Y q(X))1{−δ≤X≤δ}],

where q = f̂ − f̄δ ∈ H1[−1, 1]. (f̄δ is extended to the interval [−1, 1] continuously. It is

constant in [−1,−δ] or [δ, 1].) The first inequality comes from the fact that f̂ solves (21).

Therefore we have

E

[
1/n

n∑
i=1

[(Yiq(Xi))1{−δ≤Xi≤δ}] − Ec[(Y q(X))1{−δ≤X≤δ}]

]2

≥ c2
3E(λ1/2ω3/2)2, (25)
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Consider an orthonormal basis {φj} in L2[−1, 1], such that

〈φj , φk〉L2 = δjk;

〈φj , φk〉H1 = λjδjk

then λj ∼ j2. See Silverman (1982), or Cox and O’Sullivan (1990), or Lin (2000).

Let qj be the coefficients of q with respect to {φj}. Then

1/n
n∑

i=1

[(Yiq(Xi))1{−δ≤Xi≤δ}] − Ec[(Y q(X))1{−δ≤X≤δ}]

=
∑
j

{
qj

[
1/n

n∑
i=1

[(Yiφj(Xi))1{−δ≤Xi≤δ}] − E[(Y φj(X))1{−δ≤X≤δ}]

]}

≤

∑

j

λjq
2
j




1/2 


∑
j

λ−1
j

[
1/n

n∑
i=1

[(Yiφj(Xi))1{−δ≤Xi≤δ}] − E[(Y φj(X))1{−δ≤X≤δ}]

]2



1/2

= ‖q‖H1




∑
j

λ−1
j

[
1/n

n∑
i=1

[(Yiφj(Xi))1{−δ≤Xi≤δ}] − E[(Y φj(X))1{−δ≤X≤δ}]

]2



1/2

But we have

E

[
1/n

n∑
i=1

[(Yiφj(Xi))1{−δ≤Xi≤δ}] − E[(Y φj(X))1{−δ≤X≤δ}]

]2

≤ 1/nE
[
Y φj(X)1{−δ≤X≤δ}

]2

≤ 1/nE [φj(X)]2

= 1/n
∫ 1

−1
φ2

j(x)d(x)dx

≤ D2/n.

Therefore,

E




∑
j

λ−1
j

[
1/n

n∑
i=1

[(Yiφj(Xi))1{−δ≤Xi≤δ}] − E[(Y φj(X))1{−δ≤X≤δ}]

]2



≤ D2/n
∑
j

λ−1
j ∼ 1/n

∑
j

j−2 ∼ 1/n.

Since f̂ is the solution to (11), comparing with zero function, we get λ
∫ 1
−1(f̂

′)2 ≤ 1. Since

|f̂ | ≤ 1, we have ‖f̂‖2
H1 ≤ 2 + 1/λ. Also we have shown that

∫ 1

−1
(f̄ ′

δ)
2 =

∫ δ

−δ
(f̄ ′

δ)
2 ≤ c4λ

−1/2.

16



So we can see ‖q‖2
H1 ≤ 4 + 1/λ + c4λ

−1/2. Therefore we get

E

[
1/n

n∑
i=1

[(Yiq(Xi))1{−δ≤Xi≤δ}] − Ec[(Y q(X))1{−δ≤X≤δ}]

]2

≤ c5λ
−1/n,

Combining the last inequality with (25), we get Eω3 ≤ c6n
−1λ−2. This is a little stronger

than the conclusion of Theorem 1. �.

Proof of Theorem 2: Let f̄M be the solution to

min∫ 1

−1
(f ′)2≤M

E[1 − Y f(X)]+. (26)

We will need the following lemma in the proof.

Lemma 4.2 For sufficiently large M , we have

∫ 1

−1
|sign(p − 1/2) − f̄M |dx ≤ c7M

−(α+2)/(ᾱ+2) (27)

l(f̄M ) − l(η∗) =
∫ 1

−1
|sign(p − 1/2) − f̄M ]||2p − 1|d(x)dx ≤ c8M

−(α+1). (28)

Furthermore, for any f ∈ H1 satisfying |f(x)| ≤ 1, ∀x ∈ [−1, 1], and fixed θ > 0, we have

∫ 1

−1
(f − f̄M )2d(x)dx ≤ c9

{
[l(f) − l(f̄M )]M θ + M−ρ(θ)

}
. (29)

Proof of Lemma 4.2: (26) is equivalent to

min
f∈H1

E[1 − Y f(X)]+ + λ
∫ 1

−1
(f ′)2dx (30)

for some λ(M) depending on M . It is easy to see |f̄M | ≤ 1.

Let us first concentrate on one interval [rj, rj+1] for some fixed j. Without loss of gener-

ality, assume p(x) > 1/2 in (rj, rj+1), and rj = −δ, rj+1 = δ for some δ > ζ/2.

Denote a = f̄M(−δ), b = f̄M(δ), and Fδ = {f ∈ H1[−δ, δ], f(−δ) = a, f(δ) = b}. Then

the restriction of f̄M to the interval [−δ, δ] is the solution to the following variational problem:

min
f∈Fδ

E[(1 − Y f(X))+1{−δ≤X≤δ}] + λ
∫ δ

−δ
(f ′)2dx.

Now we can follow a proof that is similar to the proof of Lemma 4.1, [the proof is

identical to the proof of Lemma 4.1 up to (18). After that use the boundary condition (13)
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at rj and rj+1]. Some tedious by straightforward calculation yields, for M large enough,

there exists ε1 ∈ [0, ζ), ε2 ∈ [0, ζ), such that ε1 ∼ [λ(1 − a)]1/(αj+2), ε2 ∼ [λ(1 − b)]1/(αj+1+2);

and f̄M(x) = 1,∀x ∈ (−δ + ε1, δ − ε2); f̄δ strictly increases from a to 1 in [−δ,−δ + ε1],

strictly decreases from 1 to b in [δ − ε2, δ]; and

∫ −δ+ε1

−δ
(f̄ ′

M)2dx ∼ λ−1/(αj+2)(1 − a)(2αj+3)/(αj+2) (31)

∫ −δ+ε1

−δ
(1 − f̄M)dx ∼ λ1/(αj+2)(1 − a)(αj+3)/(αj+2) (32)

∫ −δ+ε1

−δ
(1 − f̄M)(2p − 1) ∼ λ(αj+1)/(αj+2)(1 − a)(2αj+3)/(αj+2) (33)

E[(1−Y f̄M(X))+1{−δ≤X≤0}]+λ
∫ 0

−δ
(f̄ ′

M)2dx−E[(1−Y )+1{−δ≤X≤0}] ∼ λ(αj+1)/(αj+2)(1−a)(2αj+3)/(αj+2)

Consider the two sides to the cross point rj, since f̄M solves (30), we can see that 1−a ∼
1 + a ∼ 1. Summing up over all the intervals, we get from (31),

∫ 1

−1
(f̄ ′

M)2dx ∼ λ−1/(α+2),

but the left hand side must be equal to M . Therefore we get M ∼ λ−1/(α+2).

Summing up over all the intervals, we obtain (27) and (28) from (32) and (33).

For (29), we have

∫ δ

−δ
(f − f̄M )2d(x)dx

=
∫

[−δ,δ]

f>f̄M

(f − f̄M)2d(x)dx +
∫

[−δ,δ]

f<f̄M

(f − f̄M)2d(x)dx

≤ c


∫

[−δ,δ]

f>f̄M

(1 − f̄M)dx +
∫

[−δ,δ]

f<f̄M

(f̄M − f)d(x)dx




≤ c


∫ δ

−δ
(1 − f̄M)dx +

∫
[−δ,δ]

f<f̄M

(f̄M − f)d(x)dx




≤ c


M−(α+2)/(ᾱ+2) +

∫
[−δ,δ],f<f̄M
p−1/2≤M−θ

(f̄M − f)d(x)dx +
∫

[−δ,δ],f<f̄M
p−1/2>M−θ

(f̄M − f)d(x)dx




≤ c


M−ρ(θ) + M−θ/ᾱ + M θ

∫
[−δ,δ],f<f̄M
p−1/2>M−θ

(f̄M − f)[2p(x) − 1]d(x)dx


 (34)

≤ c


M−ρ(θ) + M θ[

∫
[−δ,δ]

(f̄M − f)[2p(x) − 1]d(x)dx −
∫

[−δ,δ]

f>f̄M

(f̄M − f)[2p(x) − 1]d(x)dx]
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≤ c

[
M−ρ(θ) + M θ[

∫
[−δ,δ]

(f̄M − f)[2p(x) − 1]d(x)dx +
∫
[−δ,δ]

(1 − f̄M)(2p − 1)dx]

]

≤ c

[
M−ρ(θ) + M θ

∫
[−δ,δ]

(f̄M − f)[2p(x) − 1]d(x)dx + M θ−(α+1)

]

≤ c

[
M−ρ(θ) + M θ

∫
[−δ,δ]

(f̄M − f)[2p(x) − 1]d(x)dx

]
.

Here (34) follows from the boundary condition (13) in Assumption 2.

Summing up over all the intervals, we get (29). �.

We now prove Theorem 2.

In Lemma 1 of Mammen and Tsybakov (1999), put in Z = (X,Y ), z = (x, y), where

y ∈ {−1, 1}, x ∈ [−1, 1]. Let H = {h(z) = −M−1/2yf(x) : f ∈ H1,
∫ 1
−1(f

′)2dx ≤ M ; |f(x)| ≤
1,∀x ∈ [−1, 1]}.

Let HB(δ,H, P ) be the δ-entropy with bracketing of H. Let H∞(δ,H) be the δ-entropy

of H for the supremum norm, and H̄∞(δ,H) be the δ-entropy of H for the supremum norm

requiring the centers of the covering balls be in H. For a definition of these concepts, see

van de Geer (1999). Define F = {f ∈ H1 :
∫ 1
−1(f

′)2dx ≤ 1; |f(x)| ≤ M−1/2,∀x ∈ [−1, 1]}.
Then for any δ > 0, we have

HB(δ,H, P ) ≤ H∞(δ/2,H) (35)

≤ H̄∞(δ/2,H) (36)

= H̄∞(δ/2,F) (37)

≤ H∞(δ/4,F) (38)

≤ cδ−1, (39)

where (35) follows from Lemma 2.1 of van de Geer (1999). (36) is by definition. For (37),

notice that any function h in H can be written as −yf(x) with f ∈ F , and vice versa, and

that for f1, f2 ∈ F , we have |[−yf1(x)] − [−yf2(x)]| = |f1(x) − f2(x)|, for any x ∈ [−1, 1],

y ∈ {−1, 1}. (38) is easy to check, and (39) is well known. See, for example, Theorem 2.4 of

van de Geer (1999).
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Write h0(z) = −M−1/2yf̄M(x). Then by Lemma 1 of Mammen and Tsybakov (1999),

there exists constants c10 > 0, c11 > 0 such that

Pr

{
sup
h∈H

|n−1/2 ∑n
i=1{(h − h0)(Zi) − E(h − h0)(Zi)}|
{‖h − h0‖L2(P )

∨
n−1/3}1/2

> c10ν

}
≤ c11e

−ν

for ν ≥ 1. Here a
∨

b = max(a, b). This is equivalent to

Pr


 sup

|f|≤1∫ 1

−1
(f ′)2dx≤M

|n−1/2 ∑n
i=1{Yi(f̄M − f)(Xi) − EYi(f̄M − f)(Xi)}|
{M 1/2‖f − f̄M‖L2(P )

∨
Mn−1/3}1/2

> c10ν


 ≤ c11e

−ν (40)

for ν ≥ 1.

Now define Vn = n1/2M−(1+θ)/4
{
[l(f̂M ) − l(f̄M)] − [ln(f̂M) − ln(f̄M)]

}
/

{
l(f̂M) − l(f̄M)

}1/4
.

Since f̂M solves (12), we have

Vn ≥ n1/2M−(1+θ)/4[l(f̂M) − l(f̄M)]3/4. (41)

Now consider the event A = {l(f̂M) − l(f̄M) > M−(ρ(θ)+θ)}. If A holds, then

Vn ≤ sup∫ 1

−1
(f ′)2dx≤M ;|f(x)|≤1;

l(f)−l(f̄M )>M−(ρ(θ)+θ)

n1/2M−(1+θ)/4 [l(f) − l(f̄M)] − [ln(f) − ln(f̄M)]

[l(f) − l(f̄M )]1/4

≤ sup∫ 1

−1
(f ′)2dx≤M ;|f(x)|≤1;

l(f)−l(f̄M )>M−(ρ(θ)+θ)

n1/2M−(1+θ)/4 |1/n
∑n

i=1{Yi(f − f̄M)(Xi) − EYi(f − f̄M)(Xi)}|
[l(f) − l(f̄M )]1/4

≤ sup∫ 1

−1
(f ′)2dx≤M ;|f(x)|≤1;

l(f)−l(f̄M )>M−(ρ(θ)+θ)

|n−1/2 ∑n
i=1{Yi(f − f̄M)(Xi) − EYi(f − f̄M)(Xi)}|

[M 1+θ(l(f) − l(f̄M))]1/4

≤ sup∫ 1

−1
(f ′)2dx≤M ;|f(x)|≤1;

l(f)−l(f̄M )>M−(ρ(θ)+θ)

|n−1/2 ∑n
i=1{Yi(f − f̄M)(Xi) − EYi(f − f̄M)(Xi)}|

{M 1+θ[(cM−θ‖f − f̄M‖2
L2(P ) − M−(ρ(θ)+θ))

∨
M−(ρ(θ)+θ)]}1/4

(42)

≤ sup∫ 1

−1
(f ′)2dx≤M ;|f(x)|≤1

|n−1/2 ∑n
i=1{Yi(f − f̄M)(Xi) − EYi(f − f̄M)(Xi)}|

{M 1+θ[(cM−θ‖f − f̄M‖2
L2(P ))

∨
M−(ρ(θ)+θ)]}1/4

(43)

= c sup∫ 1

−1
(f ′)2dx≤M ;|f(x)|≤1

|n−1/2 ∑n
i=1{Yi(f − f̄M)(Xi) − EYi(f − f̄M)(Xi)}|

[(M 1/2‖f − f̄M‖L2(P ))
∨

M (1−ρ(θ))/2]1/2

≤ c sup∫ 1

−1
(f ′)2dx≤M ;|f(x)|≤1

|n−1/2 ∑n
i=1{Yi(f − f̄M)(Xi) − EYi(f − f̄M)(Xi)}|

[(M 1/2‖f − f̄M‖L2(P ))
∨

Mn−1/3]1/2
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where (42) follows from (29), and (43) follows from the fact that a
∨

b ≥ (a−b)
∨

b ≥ (a
∨

b)/2

for any a > 0, b > 0. The last step follows from that M(n) ∼ nt for some 0 < t ≤
2/[3(1 + ρ(θ))].

Therefore it follows from (40) that

lim sup
n→∞

E[V s
n 1A] ≤ C(s), (44)

for all s > 0 and finite constants C(s) depending on s.

By (41) and (44), we have

E{[l(f̂M ) − l(f̄M )]s1A} ≤ C(4s/3)n−γs (45)

On Ac, we have l(f̂M) − l(f̄M) ≤ M−(ρ(θ)+θ), so

E{[l(f̂M) − l(f̄M)]s1Ac} ≤ M−γs (46)

By the definition of ρ(θ), we have α + 1 ≥ ρ(θ) + θ. Noticing (a + b)s ≤ 2s(as + bs) for

any a > 0, b > 0, we see that (45) and (46) combined with (28) gives (14). Then (15) follows

directly from the following lemma.

Lemma 4.3 R(g) − R(η∗) ≤ l(g) − l(η∗) for any function g satisfying |g(x)| ≤ 1, ∀x ∈
[−1, 1].

Proof of Lemma 4.3: we have

R(g) − R(η∗) = 1/2{l[sign(g)] − l[sign(2p − 1)]}
=

∫ 1

−1
1/2[sign(2p − 1) − sign(g)][2p(x) − 1]d(x)dx

≤
∫ 1

−1
[sign(2p − 1) − g][2p(x) − 1]d(x)dx

= l(g) − l[sign(2p − 1)] = l(g) − l(η∗).

�.
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