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Abstract

Support Vector Machines �SVMs� perform pattern recognition between two
point classes by �nding a decision surface determined by certain points of the
training set� termed Support Vectors �SV�� This surface� which in some feature
space of possibly in�nite dimension can be regarded as a hyperplane� is obtained
from the solution of a problem of quadratic programming that depends on a
regularization parameter� In this paper we study some mathematical properties
of support vectors and show that the decision surface can be written as the sum
of two orthogonal terms� the �rst depending only on the margin vectors �which
are SVs lying on the margin�� the second proportional to the regularization
parameter� For almost all values of the parameter� this enables us to predict
how the decision surface varies for small parameter changes� In the special
but important case of feature space of �nite dimension m� we also show that
there are at most m�� margin vectors and observe that m�� SVs are usually
su�cient to fully determine the decision surface� For relatively small m this
latter result leads to a consistent reduction of the SV number�

� Introduction

Support Vector Machines �SVMs	 have been recently introduced as a new technique
for solving pattern recognition problems �Cortes and Vapnik �

�� Blanz et al� �

��
Scholkopf et� al� �

�� Osuna� Freund� and Girosi �

�	� According to the theory
of SVMs �Vapnik �
��� �

�	� while traditional techniques for pattern recognition
are based on the minimization of the empirical risk � that is� on the attempt to
optimize the performance on the training set �� SVMs minimize the structural risk
� that is� the probability of misclassifying yet�to�be�seen patterns for a �xed but
unknown probability distribution of the data� This new induction principle� which
is equivalent to minimize an upper bound on the generalization error� relies on the
theory of uniform convergence in probability �Vapnik �
��	� What makes SVMs
attractive is �a� the ability to condense the information contained in the training set�
and �b� the use of families of decision surfaces of relatively low VC�dimension �Vapnik
and Chervonenkis �
��	�
In the linear� separable case the key idea of a SVM can be explained in plain words�
Given a training set S which contains points of either of two classes� a SVM separates
the classes through a hyperplane determined by certain points of S� termed support
vectors� In the separable case� this hyperplane maximizes the margin� or twice the
minimum distance of either class from the hyperplane� and all the support vectors
lie at the same minimum distance from the hyperplane �and are thus termed margin
vectors	� In real cases� the two classes may not be separable and both the hyperplane
and the support vectors are obtained from the solution of a problem of constrained
optimization� The solution is a trade�o� between the largest margin and the lowest
number of errors� trade�o� controlled by a regularization parameter�

�



The aim of this paper is to gain a better understanding of the nature of support
vectors� and how the regularization parameter determines the decision surface� in both
the linear and nonlinear case� We thus investigate some mathematical properties of
support vectors and characterize the dependence of the decision surface on the changes
of the regularization parameter� The analysis is �rst carried out in the simpler linear
case and then extended to include nonlinear decision surfaces�
The paper is organized as follows� We �rst review the theory of SVMs in section �
and then present our analysis in section �� Finally� we summarize the conclusions of
our work in section ��

� Theoretical overview

In this section we recall the basics of the theory of SVM �Vapnik �

�� Cortes and
Vapnik �

�	 in both the linear and nonlinear case� We start with the simple case of
linearly separable sets�

��� Optimal separating hyperplane

In what follows we assume we are given a set S of points xi � IRn with i � �� �� � � � � N �
Each point xi belongs to either of two classes and thus is given a label yi � f��� �g�
The goal is to establish the equation of a hyperplane that divides S leaving all the
points of the same class on the same side while maximizing the minimum distance
between either of the two classes and the hyperplane� To this purpose we need some
preliminary de�nitions�

De�nition �� The set S is linearly separable if there exist w � IRn and b � IR such
that

w � xi � b � � if yi � ��
w � xi � b � �� if yi � ��� ��	

In more compact notation� the two inequalities ��	 can be rewritten

yi�w � xi � b	 � �� ��	

for i � �� �� � � � � N � The pair �w� b	 de�nes a hyperplane of equation

w � x� b � �

named separating hyperplane �see �gure ��a		� If we denote with w the norm of w�
the signed distance di of a point xi from the separating hyperplane �w� b	 is given by

di �
w � xi � b

w
� ��	

Combining inequality ��	 and equation ��	� for all xi � S we have

yidi � �

w
� ��	
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(a) (b)

Figure �� Separating hyperplane and optimal separating hyperplane� Both solid lines
in �a	 and �b	 separate the two identical sets of open circles and triangles� but the solid
line in �b	 leaves the closest points �the �lled circles and triangle	 at the maximum
distance� The dashed lines in �b	 identify the margin�

Therefore� ��w is the lower bound on the distance between the points xi and the
separating hyperplane �w� b	�
One might ask why not simply rewrite inequality ��	 as

yi�w � xi � b	 � ��

The purpose of the ��� in the right hand side of inequality ��	 is to establish a one�to�
one correspondence between separating hyperplanes and their parametric represen�
tation� This is done through the notion of canonical representation of a separating
hyperplane��

De�nition �� Given a separating hyperplane �w� b	 for the linearly separable set S�
the canonical representation of the separating hyperplane is obtained by rescaling the
pair �w� b	 into the pair �w�� b�	 in such a way that the distance of the closest point
equals ��w��

Through this de�nition we have that

minxi�S fyi�w� � xi � b�	g � ��

Consequently� for a separating hyperplane in the canonical representation� the bound
in inequality ��	 is tight� In what follows we will assume that a separating hyperplane
is always given the canonical representation and thus write �w� b	 instead of �w�� b�	�
We are now in a position to de�ne the notion of optimal separating hyperplane�

�This intermediate step toward the derivation of optimal separating hyperplanes is slightly dif�
ferent from the derivation originally developed in �Cortes and Vapnik ������
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De�nition �� Given a linearly separable set S� the optimal separating hyperplane
�OSH	 is the separating hyperplane which maximizes the distance of the closest point
of S�

Since the distance of the closest point equals ��w� the OSH can be regarded as the
solution of the problem of maximizing ��w subject to the constraint ��	� or

Problem P�

Minimize �

�
w �w

subject to yi�w � xi � b	 � �� i � �� �� � � � � N

Two comments are in order� First� if the pair �w� b	 solves P�� then for at least one
xi � S we have yi�w � xi � b	 � �� In particular� this implies that the solution of
P� is always a separating hyperplane in the canonical representation� Second� the
parameter b enters in the constraints but not in the function to be minimized�
The quantity ��w� which measures the distance between the two classes in the di�
rection of w� is named margin� Hence� the OSH can also be seen as a separating
hyperplane which maximizes the margin �see �gure ��b		� We now study the proper�
ties of the solution of the problem P��

��� Support vectors

Problem P� can be solved by means of the classical method of Lagrange multipliers
�Bazaraa and Shetty �
�
	� If we denote with � � ���� ��� � � � � �N	 theN nonnegative
Lagrange multipliers associated with the constraints ��	� the solution to problem P�

is equivalent to determining the saddle point of the function

L �
�

�
w �w �

NX
i��

�i fyi�w � xi � b	� �g � ��	

with L � L�w� b� �	� At the saddle point� L has a minimum for w � �w and b � �b
and a maximum for � � ��� and thus we can write

�L

�b
�

NX
i��

yi�i � �� ��	

�L

�w
� w �

NX
i��

�iyixi � � ��	

with
�L

�w
� �

�L

�w�

�
�L

�w�

� � � � �
�L

�wn

	�

Substituting equations ��	 and ��	 into the right hand side of ��	� we see that problem
P� reduces to the maximization of the function

L��	 �
NX
i��

�i � �

�

NX
i�j��

�i�jyiyjxi � xj�
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subject to the constraint ��	 with � � ��� This new problem is called dual problem
and can be formulated as

Problem P�

Maximize ��

�
� �D� �

P
�i

subject to
P
yi�i � �

� � ��

where both sums are for i � �� �� � � � � N � and D is an N �N matrix such that

Dij � yiyjxi � xj� ��	

As for the pair � �w��b	� from equation ��	 it follows that

�w �
NX
i��

��iyixi� �
	

while �b can be determined from the Kuhn�Tucker conditions

��i

�
yi� �w � xi � �b	� �

�
� �� i � �� �� � � � � N� ���	

Note that the only ��i that can be nonzero in equation ���	 are those for which the
constraints ��	 are satis�ed with the equality sign� The corresponding points xi�
termed support vectors� are the points of S closest to the OSH �see �gure ��b		�
Given a support vector xj� the parameter �b can be obtained from the corresponding
Kuhn�Tucker condition as

�b � yj � �w � xj�
The problem of classifying a new data point x is now simply solved by computing

sign
�
�w � x��b

�
� ���	

In conclusion� the support vectors condense all the information contained in the train�
ing set S which is needed to classify new data points�

��� Linearly nonseparable case

If the set S is not linearly separable or one simply ignores whether or not the set S
is linearly separable� the problem of searching for an OSH is meaningless �there may
be no separating hyperplane to start with	� Fortunately� the previous analysis can be
generalized by introducing N nonnegative variables � � ���� ��� � � � � �N	 such that

yi�w � xi � b	 � � � �i� i � �� �� � � � � N� ���	

If the point xi satis�es inequality ��	� then �i is null and ���	 reduces to ��	� Instead�
if the point xi does not satisfy inequality ��	� the term ��i is added to the right hand
side of ��	 to obtain inequality ���	� The generalized OSH is then regarded as the
solution to

�In what follows � � � means �i � � for every component �i of any vector ��
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Problem P�

Minimize �

�
w �w � C

P
�i

subject to yi�w � xi � b	 � �� �i i � �� �� � � � � N
� � ��

The term C
P
�i� where the sum is for i � �� �� � � � � N � can be thought of as some

measure of the amount of misclassi�cation� Note that this term leads to a more robust
solution� in the statistical sense� than the intuitively more appealing term C

P
��i � In

other words� the term C
P
�i makes the OSH less sensitive to the presence of outliers

in the training set� The parameter C can be regarded as a regularization parameter�
The OSH tends to maximize the minimum distance ��w for small C� and minimize
the number of misclassi�ed points for large C� For intermediate values of C the
solution of problem P� trades errors for a larger margin� The behavior of the OSH
as a function of C will be studied in detail in the next section�
In analogy with what was done for the separable case� problemP� can be transformed
into the dual

Problem P�

Maximize ��

�
� �D� �

P
�i

subject to
P
yi�i � �

� � �i � C� i � �� �� � � � � N

with D the same N �N matrix of the separable case� Note that the dimension of P�
is given by the size of the training set� while the dimension of the input space gives
the rank of D� From the constraints of problem P� it follows that if C is su�ciently
large and the set S linearly separable� problem P� reduces to P��
As for the pair � �w��b	� it is easy to �nd that

�w �
NX
i��

��iyixi�

while �b can again be determined from ��� solution of the dual problem P�� and from
the new Kuhn�Tucker conditions

��i

�
yi� �w � xi � �b	� � � ��i

�
� � ���	

�C � ��i	��i � � ���	

where the ��i are the values of the �i at the saddle point� Similarly to the separable
case� the points xi for which ��i � � are termed support vectors� The main di�erence
is that here we have to distinguish between the support vectors for which ��i � C and
those for which ��i � C� In the �rst case� from condition ���	 it follows that ��i � ��
and hence� from condition ���	� that the support vectors lie at a distance �� �w from
the OSH� These support vectors are termed margin vectors� The support vectors for
which ��i � C� instead� are misclassi�ed points �if �i � �	� points correctly classi�ed
but closer than �� �w from the OSH �if � � � � �	� or� in some degenerate cases� even
points lying on the margin �if �i � �	� In any event� we refer to all the support vectors
for which �i � C as errors� An example of generalized OSH with the relative margin
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vectors and errors is shown in �gure �� All the points that are not support vectors
are correctly classi�ed and lie outside the margin strip�

Figure �� Generalized optimal separating hyperplane� The two sets of circles and tri�
angles are not linearly separable� The solid line is the optimal separating hyperplane�
the �lled circles and triangles the support vectors �the margin vectors are shown in
black� the errors in gray	�

We now conclude this section by discussing the extension of the theory to the non�
linear case�

��� Nonlinear kernels

In most cases� linear separation in input space is a too restrictive hypothesis to be
of practical use� Fortunately� the theory can be extended to nonlinear separating
surfaces by mapping the input points into feature points and looking for the OSH in
the corresponding feature space �Cortes and Vapnik �

�	�
If x � IRn is an input point� we let ��x	 be the corresponding feature point with � a
mapping from IRn to a certain space Z �typically a Hilbert space of �nite or in�nite
dimension	� In both cases we denote with �i the components of �� Clearly� to an
OSH in Z corresponds a nonlinear separating surface in input space�
At �rst sight it might seem that this nonlinear surface cannot be determined unless
the mapping � is completely known� However� from the formulation of problem P�

and the classi�cation stage of equation ���	� it follows that � enters only in the dot
product between feature points� since

Dij � yiyj��xi	 ���xj	�
and

�w ���x	 � �b �
X

��iyi��xi	 ���x	 � �b�

Consequently� if we �nd an expression for the dot product in feature space which uses
the points in input space only� that is

��xi	 ���xj	 � K�xi�xj	� ���	

full knowledge of � is not necessary� The symmetric function K in equation ���	 is
called kernel� The nonlinear separating surface can be found as the solution of problem
P� with Dij � yiyjK�xi�xj	� while the classi�cation stage reduces to computing
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sign
�X

��iyiK�xi�x	 � �b
�
�

Therefore� the extension of the theory to the nonlinear case is reduced to �nding
kernels which identify certain families of decision surfaces and can be written as in
equation ���	� A useful criterion for deciding whether a kernel can be written as in
equation ���	 is given by Mercer�s theorem �Courant and Hilbert �
��� Cortes and
Vapnik �

�	� a kernel K�x� y	� with x�y � IRn� is a dot product in some feature
space� or K�x�y	 � ��x	 ���y	� if and only if

K�x�y	 � K�y�x	 and
Z Z

K�x�y	f�x	f�y	dxdy � �� �f � L��

Given such a kernelK� a possible set of functions � � ���� ��� � � �	 satisfying equation
���	 can be determined from the eigenfunctions ��i solution of the eigenvalue problemZ

K�x�y	 ��i�x	dx � 	i ��i�y	� ���	

with �i �
p
	i ��i� If the set of eigenfunctions �� is �nite� the kernel K is said to be

�nite and can be rewritten as

K�x�y	 �
X

	i ��i�x	 ��i�y	� ���	

where the sum ranges over the set of eigenfunctions� In the general case� the set �
is in�nite� the kernel is said to be in�nite� and the sum in equation ���	 becomes a
series or an integral�
We now give two simple examples of kernels� The �rst is the polynomial kernel

K�x�y	 � �� � x � y	d� x�y � ��a� a�d�
It can easily be veri�ed that the polynomial kernel satis�es Mercer�s theorem and is
�nite� The separating surface in input space is a polynomial surface of degree d� In
this case a mapping � can be determined directly from the de�nition of K� In the
particular case n � � and d � �� for example� if x � �x�� x�	 we can write

��x	 �
�
��
p
�x��

p
�x�� x

�

�� x
�

��
p
�x�x�

�
�

The second example is the Gaussian kernel

K�x�y	 � exp

��kx� yk�
�
�

�
�

for some 
 � IR� The Gaussian kernel clearly satis�es Mercer�s theorem� but is
in�nite because equation ���	 has a continuum of eigenvalues� It is easy to verify
that in this case the eigenvalues are given by the normalized Fourier Transform of the
Gaussian�

p
��
 exp��ksk�
���	� with exp�ix � s	 as corresponding eigenfunctions�

The separating surface in input space is a weighted sum of Gaussians centered on the
support vectors�
We are now fully equipped to discuss some mathematical properties of the solution
of problem P��
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� Mathematical properties

The goal is to study the dependence of the OSH on the parameter C� We �rst deal
with the linear case and then extend the analysis to nonlinear kernels�

��� Lagrange multiplier of a margin vector

We start by establishing a simple but important result on the Lagrange multipliers
of the margin vectors� We want to show that the Lagrange multiplier associated with
a margin vector is a step�wise linear function of the regularization parameter C� To
prove it� we need a few preliminary de�nitions� Since there is no risk of confusion�
we now write �� b� and w instead of ��� �b� and �w�
We introduce the sets of support vector indexes

I � fi � � � �i � Cg and J � fi � �i � Cg�
and let M � � and E be the number of indexes in I and J respectively� The set I
identi�es the M �� margin vectors� while J the E errors� While E can also be equal
to �� we suppose that there are at least two margin vectors �that is� M � �	� This
last hypothesis may not be satis�ed for highly degenerate con�gurations of points and
small values of C� but does not appear to be restrictive in cases of interest� Finally�
and with no further loss of generality� we assume that all the points are support
vectors� and� hence� that M � � � E � N �
We start by sorting the support vectors so that

I � I�
� fNg and J � fM � ��M � �� � � � � N � �g�

with I� � f�� �� � � � �Mg� and labeling the points so that yN � ��� The Kuhn�Tucker
conditions ���	 for i � I tell us that

yi�w � xi � b	 � �� ���	

Equation ���	� by means of ��	 and �
	� can be rewritten as

NX
j��

�jDji � yib � �� ��
	

From the equality constraint
P
yi�i � �� instead� and since yN � �� we have

�N �
N��X
i��

�iyi� ���	

At the same time� from equation ��
	 with i � N we get

b �
NX
j��

�jDjN � �� ���	

�This follows from the fact that if the points with �i � � are discarded	 problem P� has still the
same solution�






Plugging equations ���	 and ���	 into ��
	 we obtain

N��X
j��

�jHji � � � yi� i � I�� ���	

where H is the �N � �	 � �N � �	 matrix

Hij � yiyj�xi � xN	 � �xj � xN	� ���	

Notice that H can be written as

H �

�
HM HME

H�
ME

HE

�
�

HM being the M �M submatrix between margin vectors� HE the E � E submatrix
between errors� and HME the M � E submatrix between margin vectors and errors�
Separating the sum on margin vectors and errors in equation ���	� we �nd�

X
j�I

�jHji � C
X
j�J

Hji � � � yi� i � I�� ���	

In vector notation equation ���	 rewrites

HM�M � CHME�E � �M � yM�

with �M � ���� ��� � � � � �M	� yM � �y�� y�� � � � � yM	� and �M and �E the M � and E�
vectors with all the components equal to unit�
Assuming that the matrix HM is invertible �see the Appendix for a proof of this fact	
we have

�M � H��

M
��M � yM	�CH��

M
HME�E� ���	

From equation ���	 we infer that the Lagrange multiplier associated with a margin
vector can always be written as the sum of two terms� As made clear by the subscript
M � the �rst term depends only on the margin vectors� while the second is proportional
to C and depends on both the margin vectors and errors�
An important consequence of the existence of H��

M
is that the vectors xi � xN� �

�� �� � � � �M are linearly independent� As a corollary� the number of margin vectors
cannot exceed n��� that is M � n� Notice that this does not mean that the number
of points lying on the margin cannot exceed n��� In degenerate cases� there may be
points lying on the margin with � � �� or even support vectors lying on the margin
with � � C�

��� Dependence on the regularization parameter

We are now in a position to study the dependence of the OSH on the parameter C�
We �rst show that the normal to the OSH can be written as the sum of two orthogonal
vectors�

��



����� Orthogonal decomposition

In components equation ���	 can be rewritten

�i � ri � giC i � I�� ���	

with
rM � H��

M
��M � yM	 ���	

and
gM � �H��

M
HME�E� ���	

Notice that the ri and gi are not necessarily positive �although they cannot be both
negative	� If we de�ne

rN �
X
i�I�

riyi ��
	

gN �
X
i�I�

giyi �
X
i�J

yi� ���	

then equation ���	 is also true for the margin vector of index N as

rN � gNC �
X
i�I�

riyi �
X
i�I�

giyiC �
X
i�J

yiC �
X
i�I�

yi�i � C
X
i�J

yi � �N �

where the last equality is due to the constraint ��	 and the fact that �i � C for all
i � J � Plugging equation ���	 into �
	 and separating the constant and linear term
we obtain

w � w� � Cw�� ���	

with

w� �
X
i�I

riyixi� ���	

w� �
X
i�J

yixi �
X
i�I

giyixi� ���	

It can easily be seen that w� and w� are orthogonal� Substituting equations ��
	 and
���	 into ���	 and ���	 respectively� one obtains

w� �
X
i�I�

riyi�xi � xN	�

w� �
X
i�J

yi�xi � xN	 �
X
i�I�

giyi�xi � xN	�

Then� through the de�nition of HM and HME we have

w� �w� � rMHME�E � rMHMgM � ���	

Plugging equation ���	 in ���	 it follows immediately that w� �w� � ��

��



����� Changing the regularization parameter

We now study the e�ect of small changes of the regularization parameter C on the
OSH� Since C is the only free parameter of SVMs� this study is relevant from both the
theoretical and practical viewpoint� In what follows we let C take on values over the
positive real axis IR�� First� we notice that the possible choices of support vectors for
all possible values of C �distinguishing between margin vectors and errors	 are �nite�
If we neglect degenerate con�gurations of support vectors� this implies that IR� can
be partitioned in a �nite number of disjoint interval� each characterized by a �xed set
of support vectors� Notice that the rightmost interval is necessarily unbounded�
After this preliminary observation we can already conclude that� with the exception
of the C values corresponding to the interval ends� the set of support vectors does
not vary for small changes of C� But through the previous analysis we can also study
the dependence of the normal vector w on the parameter C� From equation ���	 it
follows that if C changes by �C and the margin vectors and errors remain the same�
the normal vector w changes by �Cw� along the direction of w�� We can make this
statement more precise distinguishing between two cases�
In the �rst case we letM reach the maximumvalue n� SinceHM has always maximum
rank� we have n� � independent Kuhn�Tucker conditions like equation ���	 and the
OSH is completely determined by the n � � margin vectors� Consequently� since for
almost all C the set of support vectors remains the same for small changes of C� w�

must vanish and we have
w �

X
i�I

riyixi� ���	

Equation ���	 tells us that if M � n the OSH is �xed and unambiguously identi�ed
by the n � � margin vectors� The fact that the OSH is �xed makes it possible to
determine the maximum interval around C� say �C�� C��� in which the OSH is given
by equation ���	� To this purpose it is su�cient to compute the ri and gi from
equations ���	 and ���	 and �nd C� and C� as the minimum and maximum C for
which the �i associated with the margin vector xi satisfy the constraint � � �i � C�
In the second case� we have M � n� The OSH is now given by equation ���	 with
w� �� �� Thus for a small change �C the new OSH w� can be written as

w� � w � �Cw�� ���	

Equation ���	 tells us that if M � n the OSH changes of an amount �Cw�� Here
again there exists a maximum interval �C�� C�� around C in which the OSH is given
by equation ���	� Similarly to the previous case� one could determine the minimum
and maximum C for which the �i associated with the margin vectors satisfy the
constraint � � �i � C� However� since to a changing OSH might correspond a new
set of support vectors� these minimum and maximum values are only a lower and
upper bound for C� and C� respectively�
Finally� we observe that even if M � n� the OSH can always be written as a linear
combination of n� � support vectors� for example by adding n� ��M errors�
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����� A numerical example

We now illustrate both cases by means of the numerical example with n � � shown
in �gure �� �gure ��a	 shows the OSH found for the displayed training set with
C � ���� The support vectors are denoted by the �lled circles and triangles �the
margin vectors in black� the errors in grey	� In accordance with equation ���	� since
there are � margin vectors the OSH is �xed� Straightforward computations predict
that the OSH must remain the same for ��� � C � ���� This prediction has been
veri�ed numerically�

(a) (b)

(c) (d)

Figure �� Optimal separating hyperplane for C � ��� �a	� C � ��� �b	� C � ��� �c	�
and C � ��� �d	 respectively� Legend as in �gure ��

Figure ��b	 shows the new OSH obtained for C just outside the interval ����� ����
�C � ���	� Notice that the errors are the same of �gure ��a	� while there are only
two margin vectors� As we have just discussed� the OSH should now change for small
variations of C as predicted by equation ���	� This has been veri�ed numerically and
�gure ��c	 displays the OSHs obtained from equation ���	 and from direct solution
of the problem P� for C � ���� The two OSH coincide within numerical precision�
For a larger variation of C �C � ���� see �gure ��d		 the number of margin vectors
goes back to � and the solution is again �xed� Notice that in this last transition one
of the errors became a margin vector �the error in the upper part of the margin strip
of �gure ��c	 is a margin vector in �gure ��d		�
As mentioned in the previous section� it is worthwhile noticing that the solutions
with smaller C �see �gure ��a	 and �b		 have a larger margin� while the solutions
with larger C �see �gure ��c	 and �d		 have a smaller number of errors�
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��� Extension to nonlinear kernels

We now extend the presented analysis to the case of nonlinear kernels�

Lagrange multiplier of a margin vector We start by observing that the same
decomposition of the Lagrange multiplier of a margin vector derived in the linear case
holds true for nonlinear kernels� Note that the matrix H of equation ���	 rewrites

Hij � yiyj �K�xi�xj	�K�xj�xN	�K�xi�xN	 �K�xN �xN		 � ���	

while equations ���	 to ���	 remain unchanged�

Orthogonal decomposition More care is needed for the extension of the orthog�
onal decomposition of w and the study of the behavior of the separating surface as a
function of C� This is because� in the nonlinear case� it may not be possible to recover
an explicit expression for w� However� this does not pose major problems because all
the expressions involving w are e�ectively dot products between feature points and
can be computed by means of the kernel K�
Indeed� if we take the dot product between w and ��x	� we obtain

w ���x	 �
NX
i��

�iyiK�xi�x	�

that can be written as

NX
i��

�iyiK�xi�x	 �
X
i�I

riyiK�xi�x	

� C

�X
j�J

yjK�xj�x	 �
X
i�I

giyiK�xi�x	

�
� ���	

The two terms in the r�h�s� of equation ���	 are the counterparts of equations ���	
and ���	 de�ning w� and w� respectively� Note that even if the explicit expression
for w� and w� cannot be given� the orthogonality relation ���	 remains true� This
can be seen from the fact that the r�h�s� of equation ���	 depends on the matrix H
which� in the nonlinear case� is rewritten as in equation ���	� In this respect� the two
terms in the r�h�s� of equation ���	 can be regarded as orthogonal�

Changing the regularization parameter So far� all the results derived in the
linear case carried through the case of nonlinear kernels� For the dependence of the
separating surface on the parameter C� instead� it is convenient to distinguish between
�nite and in�nite kernels�
For �nite kernels� all the results obtained in the linear case are still valid and can be
rederived simply replacing n� dimension of input space� with m� dimension of feature
space� For example� if M � m� the OSH in feature space does not change for small
changes of C and the second term in the r�h�s of equation ���	 vanishes for all x�
Furthermore� the interval �C�� C��� within which the OSH is �xed� can be determined
exactly as in the linear case�
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For kernels of in�nite dimension� instead� a �nite number of margin vectors is not
su�cient to fully determine the OSH� Consequently and di�erently from the �nite
case� the OSH is never �xed and the second term of equation ���	 does not vanish�
For a small change �C� the dot product w ���x	 changes of the amount

�C

�X
j�J

yjK�xj�x	 �
X
i�I

giyiK�xi�x	

�
�

In summary� all the results derived in the linear case can be extended without major
changes to the nonlinear case� with the exception of the properties depending on the
�niteness of the dimension of the linear case� like the upper bound on the number of
margin vectors� properties that are still true for �nite kernels only�

� Conclusions

In the case of pattern recognition� SVMs depend only one free parameter� the regular�
ization parameter C� In this paper we have discussed some mathematical properties
of support vectors useful to characterize the behavior of the decision surface with
respect to C� We have identi�ed a special subset of support vectors� the margin vec�
tors� whose Lagrange multiplier are strictly smaller than the regularization parameter
C� We have shown that the margin vectors are always linearly independent and that
the decision surface can be written as the sum of two orthogonal terms� the �rst
depending only on the margin vectors� the second proportional to the regularization
parameter� For almost all values of the parameter� this enabled us to predict how
the decision surface varies for small parameter changes� In general we found that the
solution is usually stable with respect to small changes of C�
The obtained results can be more conveniently summarized distinguishing between
�nite and in�nte kernels� For kernels of �nite dimension m� it turned out that m� �
is the least upper bound for the number of margin vectors �M ��	 and the behavior
of the OSH as a function of C depends on whether M � m or M � m� If M � m�
the M �� margin vectors are su�cient to fully determine the equation of the OSH in
feature space and for almost all values of C the OSH does not vary for small changes
of C� If M � m� instead� the OSH varies of an amount proportional to the change
�C in a direction identi�ed by both the margin vectors and errors� In both cases it is
worthwhile observing that the number of support vectors e�ectively needed to identify
the decision surface is never greater than m� �� This latter result may be useful to
reduce the number of support vectors e�ectively needed to perform recognition�
For in�nite kernels� the margin vectors are still linearly independent but there is no
upper bound on their number� For small changes of C the OSH is not �xed and varies
as in the case M � m of �nite kernels�
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Appendix

In this appendix we sketch the proof of the existence of H��
M
� First� we need to

�a	 transform the original dual problem P� into a Linear Complementary Problem
�LCP	� and �b	 derive the explicit expression for the matrix G which de�nes the
polyhedral set on which the solution of the LCP lies�
Let us de�ne � � ���� ��� � � � � �N��	 and remind that �N �

P
yi�i where the sum

ranges over i � �� �� � � � � N � �� We let N� and N� be the number of points with
positive and negative labels respectively� We start by rewriting problem P� without
the equality constraint as

Problem P�

Minimize
�

�
� �H�� �

X
i�I�

�i

subject to �
N��X
i��

yi�i � ��
N��X
i��

yi�i � C

�i � C� i � �� �� � � � � N � �
�i � �� i � �� �� � � � � N � �

with I� the set of indexes corresponding to the �i for which yi � �� Then� we let u��
u�� u � �u�� u�� � � � � uN��	� and v � �v�� v�� � � � � vN��	 be the �N Lagrange multipliers
associated with the constraints of problem P� respectively�
The LCP associated with problem P� is obtained by

�� setting equal to � the gradient of the Lagrangian associated with problem P��
or

N��X
j��

�jHji � � � yi�u� � u�	� yi � ui � vi � ��

and

�� introducing the N � � slack variables� s�� s�� and s � �s�� s�� � � � � sN��	� satis�
fying

s� �
N��X
i��

�iyi � ��

s� �
N��X
i��

�iyi � C�

and
si � �i � C�

along with the associated complementary conditions

s�u� � s�u� � ��

�In the constrained optimization jargon	 a slack variable is a nonnegative variable that turns an
inequality into an equality constraint�
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siui � ��

and
�ivi � ��

for each i � �� �� � � � � N � ��

The solution of problem P� can be obtained as the solution of the LCP

Problem P�

Solve t�Mz � q

subject to t� z � �
tizi � �� i � �� �� � � � � �N �

with t � �s�� s�� s�v	� z � �u�� u��u��	�

M �

�
� �A
A� H

�
�

A �

�
BBBBBBBBBBB�

�y� � � � �yN��
y� � � � yN��

IN��

�
CCCCCCCCCCCA
�

q � �b�k	�

b � ���

N��z �	 

C� � � � � C	� and k � �

N�z �	 

��� � � � ����

N���z �	 

�� � � � � �	�

Similarly to the case of linear programming� a solution to Problem P� is a vertex
of a polyhedral set� In addition� the solution must also satisfy the complementarity
conditions� In the case of problem P�� a solution vector p � �t� z	 is a vertex of
the polyhedral set S � fp � Gp � q�p � �g� with G � �I�N��M �� p � �pB�pN	�
pB � B��q� pN � �� and B is the �N � �N matrix de�ned by the columns of G
corresponding to the �N active variables�
Through simple but lengthy calculations� it can be seen that the matrix HM is a
submatrix of B and H��

M
a submatrix of B��� The existence of H��

M
is thus ensured

by the existence of B���
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