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About this class

Theme Support Vector Machines are discussed in detail.
The connection between the primal and dual forms is
explored. Alternate forms of the SVM problem are
formed. How to solve the standard SVM problem is
discussed.

Math required Lagrange multipliers technique.

Web The slides and all what concerns this class can be
found on the web.



Plan

e Derivation of the SVM Dual

e Alternate Forms of SVMs

e How To Solve SVMs



T he Primal and Dual Formulations

We restate the primal and dual formulations for linear
SVMs:

(P) min %||W||2-|-C'Z£7; (D) max a-l—%aDa
W7b7§ (87
yi(w-x;+b) >1-¢ a-y =
& =20 O<a <C

where D;; = yy;%x; - x;. What is the connection between
(P) and (D)7



Motivation From Regularization Theory, 1

To perform structural risk minimization, we'd like to solve:

(SRM) min >V (f(xi,v:))

f
[fll < A

for a variety of values of A, and then pick the value of A
that minimizes a bound on generalization error.

If our loss function V is the hinged loss

VIf(x,9)) = (1 =y f(x1))+

then we can rewrite the problem as:



Motivation From Regularization Theory, II

(R) min }¢&;
W7b7£
y;(w-x;+b) >1-¢
|wl]] <A
& >0

Our actual procedure differs from this in two (one and a
half??) ways:



Motivation From Regularization Theory, III

e We choose C, not A, optimizing 3||w|? + CY§&. A
choice of A is implicit here, and is data dependent.
Increasing C'is equivalent to increasing A, although the
precise relationship is unknown.

e In practice, we often use a single value of C', moving
further away from structural risk minimization.



The Primal Formulation, w/Lagrange
Multipliers

We will start with the primal problem, and using the
technique of Lagrange multipliers, derive the dual. We
begin by associating Lagrange multiplier variables with

each primal constraint:

(P) min S|w|?2+CXg
w,b, &
y(w-x;+b) >21-& (o)
& >0 (1)



The Lagrangian

This leads to a formula called the Lagrangian:

L(W7b7£7a7,u) —
HwP+CY & — Y ai(yi(w-x; +b) — 14+ &) — X wi&

We find our solution by simultaneously minimizing L with
respect to our original primal variables w,b, and &, and
maximizing L with respect to our new, dual variables «
and u, subject to the constraints that « > 0 and u > 0.



Removing b and ¢, 1

Taking derivatives with respect to b and &, we find:

OL
b
oL
&

=0 = Zaiyizo

=0 = C—Ozi—,uizo
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Removing b and &, 11

Substituting back into L, we obtain the new Lagrangian:

L (w,a, ) = Z|wl% = Y ai(ui(w - x) + 1)

which we want to minimize with respect to w, and maxi-
mize with espect to a and u, subject to the constraints:
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Removing w

oL’
a—W:Oiw—Zaiini:O:>’w:ZOéiini

The optimal hyperplane w can be expressed as a sum of the
input vectors x;, multiplied by their class y; and their dual
variables a;. We also knew this directly from regularization
theory in a previous class.

Making this substitution, noting that
O yieixi)? =Y yiyjouax; X;,

and noting that after this substitution, we are maximiz-
iIng with respect to all remaining variables, we obtain the
following dual program:

12



Almost The Dual Program

(D)) max a-1-— %aDa
o, p

a .

C—a-—

T QT
VIV |

O
O
O
O

where D;; = yy;X; - X;. Because p does not appear in
the objective function, we can remove it from the final
formulation, leading to the SVM dual...
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The SVM Dual Program

(D) max a-1-— %ozDoz
o
O{o
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Nonlinear SVMSs, 1

The *“traditional” approach is to start with linear SVMs,
derive the dual, then note that in the dual, the x; vectors
themselves are not required, but only dot products of the
form Xj * Xj- We substitute K(Xi,Xj) = Kij = CD(Xi) . Cb(Xj),
which gives a different D matrix. but the same quadratic

program formulation.

If, instead, we address nonlinear SVMs by assuming the
form of the solution:

w =) 47 P(x;)
we can derive both primal and dual nonlinear SVM formu-
lations. The derived programs are...
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Primal and Dual Nonlinear

(PNL) min 3yDy+CX¢

v, b, &
v; (> y;v K55 + b)
§i
(DNL) max a-1-3aDa
(@
-y

0< &

VIV
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SVMs

1-¢&

Q ©
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Convexity

If K is a valid kernel (i.e., K satisfies Mercer's Condition),
the matrix D is positive semidefinite, and the problems
PNL and DNL are both feasible convex quadratic pro-
grams. Therefore, they both have optimal solutions, and
those optimal solutions will have the same objective val-
ues. The optimal solutions are not necessarily unique, un-
less the matrix D is positive definite.
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Complementary Slackness

We can relate solutions to the primal and dual problems
using complementary slackness. For our purposes, we
can interpret this to mean this if we have an inequality
constraint g(z) < 0, and an associated dual variable k,
then, if we have optimal solutions to the primal and dual
problems, at optimality, £-g(xz) = 0. In other words, either
the dual variable is O or the inequality is satisfied as an
equality.

Using complementary slackness, we see that if ~,b, and
¢ are an optimal solution to PNL, and « is an optimal
solution to DNL, then all of the following hold:
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Conditions Holding At Optimality

D~y — D«
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C —a; —
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From Dual To Primal

Suppose a solves DNL. Then we can easily use the opti-
mality conditions to get a solution to PNL. First, we set
~ = a. Next, we assume that for some i, 0 < o; < C (if
not, we are in trouble). By Eqgn. 5:

yiQ_yviKij+b) —14&=0
Also, u; > 0 by Egn. 3, so & = 0 by Egn. 6. We conclude
that b can determined by:

b=y; — > yjviKij
Once we have b, the & can be determined from Eqgn. 4.
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From Primal To Dual?

Given a solution to PNL, we cannot necessarily determine
a solution to DNL. We try to set a = v to satisfy Eqgn. 1,
but this choice of @ may not satisfy Eqn. 2. Even though
every valid « is a valid ~, a valid v may not be a valid «a.

If the matrix D is positive definite, then it is possible to
show that the difficulty disappears, and that optimal ~ and

a exist, and are unique.

This should be viewed as the more ‘“usual’ case. Of
course, the primal solution is what we actually want...
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Why Is Training an SVM Hard?

Suppose you are given a ‘“black box” which solves QP
problems of the form PNL or DNL. Such packages exist
— CPLEX, MINOS, LOQO, Matlab QP Solver, etc.

The problem: if we have n data points, we need O(n?)
memory just to write down the matrix D. If n = 20000,
and it takes 4 bytes to represent an entry of D, we would
need 1.6 Gigabytes to store the D matrix.

So we can train small SVMs using an arbitrary QP package,
but this doesn’t scale to large problems. What do we do?
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The Answer: Decomposition

We can solve a large SVM dual problem by solving a se-
quence of smaller problems. Suppose we divide o into two
sets, a working set ajpy and the remaining variables ap.
We can rewrite the dual problem:

Dww Dwgr

DNL) max [owanr]- -1 — 1 [awa
( ) [awaR] 5 [awaRr] Drw  Dpr

aw
QR

«

[awagr] -y
(87

= 0
0<a < C
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The Reduced Problem

Suppose we are given some feasible a. Now, we view ap,
as variables and apr as constants. Suppressing constant
terms, we can rewrite our problem as:

(DNLVV) Max (]_ — DWRQR)QW — %awDWWoAW
aw

aAw "YW = —QAaR YR

0<ay < C

DNLW has the same form as DNL, and can be solved
using a black box.
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Decomposition Cont’d.

The basic method: at each iteration, choose a working set
ay, and optimize just those variables by solving DNLW.

When we optimize over ayy, holding ar constant, we must
move towards the optimum over all of a« — those terms
that involve ap only remain constant, and all other terms
are optimized over:

Obj(DNL) = Obj(DNLW) + F(ag)
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Choosing A Working Set

Looking back at our optimality conditions, and assuming
that optimality, we'll set v = «a, we will have:

a; =0 == 2yiaK;+b>1

aj=0C == Yy K;+b<1

Traditionally, at any given time, one “guesses” that one’s
« IS correct, uses a «; that is between 0 and C to deter-
mine a provisional b, then finds o; which violate the above
optimality conditions. Violating points are added.

It is possible to work directly with the gradient of DNL
without computing an intermediate b.
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Solving Large-Scale SVMs

We now have a method for solving large SVM problems
with a fixed amount of memory, assuming we have a method
for solving “reasonable sized” problems of the form DNL.
These packages exist, but the best ones are quite expen-
sive, and they sometimes have numerical convergence is-
sues...

Is there another way?
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Optimizing Two Points At A Time

If we require the working set to be of size 2, the resulting
subproblem can be solved analytically — we are simply
Mminimizing a quadratic function of two variables, subject
to an equality constraint and box constraints.

ap, =C

ap =0 a1=C

Oz1:C
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Why Is Training an SVM Slow?

Computing a single kernel product K;; requires O(n) time,
where n is the input dimensionality.

It is crucial to cache kernel products that are going to be
needed again. This is what makes the problem difficult
and complex. Differences in caching strategies and perfor-
mances lead to most of the differences between real-world
algorithms.
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SvmFu

SvmFu, a package developed at CBCL a mixed-level strat-
eqgy:

e Breaks the problem up into medium-large subproblems
(user-defined size)

e Large subproblems are directly related to the amount
of caching

e Large subproblems are themselves solved by optimizing
two elements at a time

e http://fpn.mit.edu/SvmFu
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Linear SVMs Can Be Much Faster

To check whether a given point x;, violates optimality con-
ditions, we need to compute f(z;). In the nonlinear case,
we need to compute

ZajyjK(xiawj) -|— b.
In the linear case, if we maintain w, we only need to com-
pute

w-x + b,

which can be much faster.

This is especially true in the testing stage.
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b In The Objective Function, I

We can add %bQ to the objective function:

(PNLB) min Z(yDy+b%) +CX¢
v,b,§

vy Ky +0b) > 1-¢

& >0 0
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b In The Objective Function, II

Geometrically, this means that we are now penalizing the
Mminimum distance between the hyperplane and the origin.
We “expect’” the data to be zero-mean, and penalize de-

viations from this.

The Lagrangian becomes:

L(W7 b7 57 &, :u) —
HIWlP+3024+C Y& — Y ai(yi(w-x;+b) — 14&) = pié;
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b In The Objective Function, III

Taking the derivative of this new Lagrangian with respect
to b:

oL
%:O — b—ZOAZ‘yZ‘:O

Other than this, everything else is the same, and the new
dual is:

(DNLB) max a-1- 3aDa
(@
O<a < C

If we solve DNLB, we no longer need an equality constraint
(making the problem somewhat easier), and at the end,
we set b = > y;«;.
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No b at All

We can remove b entirely, forcing the hyperplane to go
through the origin, resulting in the following pair of prob-
lems:

(PNLNB) min 3yDy+CX ¢

v, b, &
v (CyiviKi) > 1-&;
& > 0
(DNLNB) max a-1- 3aDa
(8%
O<a < C
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Sparsity Control, 1

Imagine we are solving the primal problem, but we're get-
ting too many support vectors. We could try to penalize
the number of SVs directly:

(PNLLO) min 39Dy +CX &+ D|[vllzo
v, b,§
vi(CyiviKi) > 1-§;
& > 0

where, [|7||o i the number of non-zero entries in ~v. Un-
fortunately, this is an intractable, NP-hard optimization
problem.
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Sparsity Control, II

We can, however, penalize v in the L1 norm, which can
be shown to have a somewhat similar effect:

(PNLL1) min 34Dy+CYX &+ D911
Y, b,&
v (CyiviKi) > 1 =&
& > 0

Several variants of this are possible. Unfortunately, none of
them seem to lead to formulations with duals that decom-
pose, so they can only be used on relatively small problems.
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