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Abstract 

The use of intelligent systems for stock market predictions has been widely established. 
In this paper, we investigate how the seemingly chaotic behavior of stock markets could 
be well represented using   several connectionist paradigms and soft computing 
techniques. To demonstrate the different techniques, we considered Nasdaq-100 index of 
Nasdaq Stock MarketSM and the S&P CNX NIFTY stock index.  We analyzed 7 year’s 
Nasdaq 100 main index values and 4 year’s NIFTY index values. This paper investigates 
the development of a reliable and efficient technique to model the seemingly chaotic 
behavior of stock markets. We considered an artificial neural network trained using 
Levenberg-Marquardt algorithm, Support Vector Machine (SVM), Takagi-Sugeno neuro-
fuzzy model and a Difference Boosting Neural Network (DBNN). This paper briefly 
explains how the different connectionist paradigms could be formulated using different 
learning methods and then investigates whether they can provide the required level of 
performance, which are sufficiently good and robust so as to provide a reliable forecast 
model for stock market indices. Experiment results reveal that all the connectionist 
paradigms considered could represent the stock indices behavior very accurately. 
 
Key words: connectionist paradigm, support vector machine, neural network, difference 
boosting, neuro-fuzzy, stock market. 
 

1.  INTRODUCTION 

Prediction of stocks is generally believed to be a very difficult task. The process behaves 
more like a random walk process and time varying. The obvious complexity of the 
problem paves way for the importance of intelligent prediction paradigms. During the last 
decade, stocks and futures traders have come to rely upon various types of intelligent 
systems to make trading decisions [1][3][7][11][18][19][26][23][28]. Several intelligent 
systems have in recent years been developed for modelling expertise, decision support 
and complicated automation tasks etc [28][9][15][5][24][16][29][4][17]. In this paper, we 
analysed the seemingly chaotic behaviour of two well-known stock indices namely 
Nasdaq-100 index of NasdaqSM [21] and the S&P CNX NIFTY stock index [22]. 



Nasdaq-100 index reflects Nasdaq's largest companies across major industry groups, 
including computer hardware and software, telecommunications, retail/wholesale trade 
and biotechnology [21]. The Nasdaq-100 index is a modified capitalization-weighted 
index, which is designed to limit domination of the Index by a few large stocks while 
generally retaining the capitalization ranking of companies. Through an investment in 
Nasdaq-100 index tracking stock, investors can participate in the collective performance 
of many of the Nasdaq stocks that are often in the news or have become household 
names. Similarly, S&P CNX NIFTY is a well-diversified 50 stock index accounting for 
25 sectors of the economy [22]. It is used for a variety of purposes such as benchmarking 
fund portfolios, index based derivatives and index funds. The CNX Indices are computed 
using market capitalisation weighted method, wherein the level of the Index reflects the 
total market value of all the stocks in the index relative to a particular base period. The 
method also takes into account constituent changes in the index and importantly 
corporate actions such as stock splits, rights, etc without affecting the index value.  

Figure 1. Training and Test data sets for Nasdaq-100 Index (b) NIFTY index 

Our research is to investigate the performance analysis of four different connectionist 
paradigms for modelling the Nasdaq-100 and NIFTY stock market indices. The four 
different techniques considered are an artificial neural network trained using the 
Levenberg-Marquardt algorithm [6], support vector machine [27], difference boosting 
neural network [25] and a Takagi-Sugeno fuzzy inference system learned using a neural 
network algorithm (neuro-fuzzy model) [13]. Neural networks are excellent forecasting 
tools and can learn from scratch by adjusting the interconnections between layers. 
Support vector machines offer excellent learning capability based on statistical learning 
theory. Fuzzy inference systems are excellent for decision making under uncertainty. 
Neuro-fuzzy computing is a popular framework wherein neural network training 
algorithms are used to fine-tune the parameters of fuzzy inference systems. We analysed 
the Nasdaq-100 index value from 11 January 1995 to 11 January 2002 [21] and the 



NIFTY index from 01 January 1998 to 03 December 2001 [22]. For both the indices, we 
divided the entire data into almost two equal parts. No special rules were used to select 
the training set other than ensuring a reasonable representation of the parameter space of 
the problem domain. The complexity of the training and test data sets for both indices are 
depicted in Figures 1 and 2 respectively. In Section 2 we briefly describe the different 
connectionist paradigms followed by experimentation setup and results in Section 3. 
Some conclusions are also provided towards the end. 

Figure 2. Training and Test data sets for NIFTY index 

2. INTELLIGENT SYSTEMS: A CONNECTIONIST MODEL APPROACH 

Connectionist models “learn” by adjusting the interconnections between layers. When the 
network is adequately trained, it is able to generalize relevant output for a set of input 
data. Learning typically occurs by example through training, where the training algorithm 
iteratively adjusts the connection weights (synapses). In an artificial neural network 
learning occurs by the iterative updating of connection weights using a learning 
algorithm.  

2.1 ARTIFICIAL NEURAL NETWORKS 

The artificial neural network (ANN) methodology enables us to design useful nonlinear 
systems accepting large numbers of inputs, with the design based solely on instances of 
input-output relationships. For a training set T consisting of n argument value pairs and 
given a d-dimensional argument x and an associated target value t will be approximated 
by the neural network output. The function approximation could be represented as 
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In most applications the training set T is considered to be noisy and our goal is not to 
reproduce it exactly but rather to construct a network function that generalizes well to 
new function values. We will try to address the problem of selecting the weights to learn 



the training set. The notion of closeness on the training set T is typically formalized 
through an error function of the form 

2

1
�

=
−=

n

i
iiT tyψ          (1) 

where yi is the network output. Our target is to find a neural network � such that the 
output yi = � (xi, w) is close to the desired output ti for the input xi (w = strengths of 
synaptic connections). The error �T = �T (w) is a function of w because y = � depends 
upon the parameters w defining the selected network �. The objective function �T (w) for 
a neural network with many parameters defines a highly irregular surface with many 
local minima, large regions of little slope and symmetries. The common node functions 
(tanh, sigmoidal, logistic etc) are differentiable to arbitrary order through the chain rule 
of differentiation, which implies that the error is also differentiable to arbitrary order.  
Hence we are able to make a Taylor's series expansion in w for �T. We shall first discuss 
the algorithms for minimizing �T by assuming that we can truncate a Taylor's series 
expansion about a point wo that is possibly a local minimum. The gradient (first partial 
derivative) vector is represented by 
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The gradient vector points in the direction of steepest increase of �T and its negative 
points in the direction of steepest decrease. The second partial derivative also known as 
Hessian matrix is represented by H 
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The Taylor's series for �T, assumed twice continuously differentiable about w0, can now 
be given as 
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where O (�) denotes a term that is of zero-order in small � such that 0
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If for example there is continuous derivative at w0, then the remainder term is of order 
30ww −  and we can reduce (4) to the following quadratic model 

)ww)(w(H)ww(
2
1

)ww()w(g)w()w(m 00T00T00
T −−+−+= ψ   (5) 

Taking the gradient in the quadratic model of (5) yields 
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If we set the gradient g=0 and solving for the minimizing w* yields 
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The model m can now be expressed in terms of minimum value of w* as 
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a result that follows from (5) by completing the square or recognizing that g(w*)=0. 
Hence starting from any initial value of the weight vector, we can in the quadratic case 
move one step to the minimizing value when it exists. This is known as Newton's 
approach and can be used in the non-quadratic case where H is the Hessian and is 
positive definite. 

2.1.1 LEVENBERG-MARQUARDT ALGORITHM 

The Levenberg-Marquardt (LM) algorithm [6] exploits the fact that the error function is a 
sum of squares as given in (1). Introduce the following notation for the error vector and 
its Jacobian with respect to the network parameters w 
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The Jacobian matrix is a large p ×  n matrix, all of whose elements are calculated directly 
by backpropagation technique. The p dimensional gradient g for the quadratic error 
function can be expressed as 
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Hence defining i
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H (w) = JJT + D         (11) 

The key to the LM algorithm is to approximate this expression for the Hessian by 
replacing the matrix D involving second derivatives by the much simpler positively 
scaled unit matrix I∈ . The LM is a descent algorithm using this approximation in the 
form 
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Successful use of LM requires approximate line search to determine the rate �k. The 
matrix JJT is automatically symmetric and non-negative definite. The typically large size 
of J may necessitate careful memory management in evaluating the product JJT. Hence 
any positive ∈ will ensure that Mk is positive definite, as required by the descent 
condition. The performance of the algorithm thus depends on the choice of ∈. 
 
When the scalar ∈ is zero, this is just Newton's method, using the approximate Hessian 
matrix. When ∈ is large, this becomes gradient descent with a small step size. As 
Newton's method is more accurate, ∈ is decreased after each successful step (reduction in 
performance function) and is increased only when a tentative step would increase the 
performance function. By doing this, the performance function will always be reduced at 
each iteration of the algorithm. 

2.2 SUPPORT VECTOR MACHINES (SVM) 

Support Vector Machines (SVMs) [27] combine several techniques from statistics, 
machine learning and neural networks. SVM perform structural risk minimization. They 
create a classifier with minimized VC (Vapnik and Chervonenkis) dimension. If the VC 
Dimension is low, the expected probability of error is low as well, which means good 
generalization. SVM has the common capability to separate the classes in the linear way. 
However, SVM also has another specialty that it is using a linear separating hyperplane 
to create a classifier, yet some problems can’t be linearly separated in the original input 
space. Then SVM uses one of the most important ingredients called kernels, i.e., the 
concept of transforming linear algorithms into nonlinear ones via a map into feature 
spaces. Figures 3 and 4 illustrate two categories of data using Y+ and Y- symbols.  
 
 
 
 
 
 
 
 
 

 
 

 
 

 

 

 

y = w.x – b = –1 

� 

� 
�

� � 
� � 

� 

� 

� 
� � 

� 

� 

� 

� 

� 

� � 

� 

� 

− −− − −
−−

− −
−−

−
−

−

−
−

−
−

−

���������������	 
��������������
 

w 

Margin = 
2

2
w

 

� 

� 
�

� � 
� � 

� 

�

� 
� � 

� 

� 

� 

� 

� 

� � 

� 

� 

− −
− − −

−−
− −

−−

−
−

−

−
−

−
−

−

���������������	 
��������������
 

w 

���������������	 

Margin = 
2

2
w

 

−
−

− −

� 
� 

� 

� 

−
−

� Y
+ 

Y
+ 

Y− 
Y− 

Figure 3: The linearly separable case.  Figure 4: The linearly inseparable case.  



 

2.2.1 �������	
� �

We consider N training data points {(x1, y1), (x2, y2),…..,(xN,yN)} where xi∈ Rd and yi ∈ 
{±1}. We would like to explain a linear separating hyperplane classifier: 
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Furthermore, we want this hyperplane to have the maximum separating margin with 
respect to the two classes. Specifically, we want to find this hyperplane HP : y = w.x – b 
= 0 and two hyperplanes parallel to it and with equal distances to it, 
 
HP1 : y = w.x – b = +1  and  HP2 : y = w.x – b = – 1      (14) 
 
with the condition that there are no data points between HP1 and HP2, and the distance 
between HP1 and HP2 is maximized. 
For any separating plane HP and the corresponding HP1 and HP2, we can always 
normalize the coefficients vector w so that HP1 will be y = w.x – b = +1, and HP2 will be 
y = w.x – b = –1. 
Our aim is to maximize the distance between HP1 and HP2. So there will be some 
positive examples on HP1 and some negative examples on HP2. These examples are 
called support vectors because only they participate in the definition of the separating 
hyperplane, and other examples can be removed and/or moved around as long as they 
don’t cross the planes HP1 and HP2. 

Recall that the 2-D, the distance from a point (x0, y0) to a line Ax+Bx+C = 0 is 
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− , and the distance between HP1 and HP2 is 
w
2 . So, in order to maximize the 

distance, we should minimize wTww =  with the condition that there are no data points 

between HP1 and HP2  w.x – b ≥ +1, for positive example yi = +1 and w.x – b ≥ -1, for 
negative example yi = -1 

These two condition can be combined into:   yi(w.x – b) ≥ 1 
Now the problem can be formulated as  
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This is a convex, quadratic programming problem (in w, b) in a convex set. 

Introducing Lagrange multipliers α1, α2, ….αn≥ 0, we have the following Lagrangian: 
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2.4.2 NON LINEAR SVM 
When the two classes are non-linearly distributed then SVM can transform the data 
points to another high dimensional space such that the data points will be linearly 
separable. Let the transformation be Φ(⋅⋅⋅⋅). In the high dimensional space, we solve 
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Suppose, in addition, Φ(xi)⋅⋅⋅⋅Φ(xj) = k(xi,xj). That is, the dot product in that high 
dimensional space is equivalent to a kernel function of the input space. So, we need not 
be explicit about the transformation Φ(⋅⋅⋅⋅) as long as we know that the kernel function k(xi, 
xj) is equivalent to the dot product of some other high dimensional space. 
The Mercers’s condition can be used to determine if a function can be used as a kernel 
function: 

There exists a mapping Φ and an expansion 
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if and only if, for any g(x) such that � dxxg 2)(  is finite, then 
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The foundations of SVM have been developed by Vapnik [27] and are gaining popularity 
due to many attractive features, and promising empirical performance. The possibility of 
using different kernels allows viewing learning methods like Radial Basis Function 
Neural Network (RBFNN) or multi-layer Artificial Neural Networks (ANN) as particular 
cases of SVM despite the fact that the optimized criteria are not the same [14]. While 
ANNs and RBFNN optimizes the mean squared error dependent on the distribution of all 
the data, SVM optimizes a geometrical criterion, which is the margin and is sensitive 
only to the extreme values and not to the distribution of the data into the feature space. 
The SVM approach transforms data into a feature space F that usually has a huge 
dimension. It is interesting to note that SVM generalization depends on the geometrical 
characteristics of the training data, not on the dimensions of the input space. Training a 
support vector machine (SVM) leads to a quadratic optimization problem with bound 
constraints and one linear equality constraint. Vapnik [27] shows how training a SVM for 
the pattern recognition problem leads to the following quadratic optimization problem 
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Where l is the number of training examples α is a vector of l variables and each 
component iα corresponds to a training example (xi, yi). The solution of (1) is the vector 



*α for which (1) is minimized and (2) is fulfilled. We used the SVMTorch for simulating 
the SVM learning algorithm [10]. 

2.3 NEURO-FUZZY SYSTEM 

Neuro Fuzzy (NF) computing is a popular framework for solving complex problems [2]. 
If we have knowledge expressed in linguistic rules, we can build a Fuzzy Inference 
System (FIS) [8], and if we have data, or can learn from a simulation (training) then we 
can use ANNs. For building a FIS, we have to specify the fuzzy sets, fuzzy operators and 
the knowledge base. Similarly for constructing an ANN for an application the user needs 
to specify the architecture and learning algorithm. An analysis reveals that the drawbacks 
pertaining to these approaches seem complementary and therefore it is natural to consider 
building an integrated system combining the concepts. While the learning capability is an 
advantage from the viewpoint of FIS, the formation of linguistic rule base will be 
advantage from the viewpoint of ANN. 
 
Figure 5 depicts the 6- layered architecture of multiple output ANFIS and the 
functionality of each layer is as follows: 

Layer-1. Every node in this layer has a node function. )x(iA
1
iO µ= , for i =1, 2 or 

)y(2iB
1
iO −= µ , for i=3,4,…. 1

iO  is the membership grade of a fuzzy set A ( = A1, A2, B1 

or B2) and it specifies the degree to which the given input x (or y) satisfies the quantifier 
A. Usually the node function can be any parameterized function. A gaussian membership 
function is specified by two parameters c (membership function center) and � 
(membership function width).  
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Layer-2. Every node in this layer multiplies the incoming signals and sends the product 
out. Each node output represents the firing strength of a rule.  
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iO =×== µµ , In general any T-norm operator that perform 

fuzzy "AND" can be used as the node function in this layer. 

Layer-3. The rule consequent parameters are determined in this layer.  
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Layer-4. Every node i in this layer is with a node function  

)ryqxp(wfwO iiiiii
4
i ++== �� , where iw is the output of layer 2  

Layer-5. Every node in this layer aggregates all the firing strengths of rules  
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Layer-6. Every i-th node in this layer calculates the individual outputs.  
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Figure 5. Architecture of ANFIS with multiple outputs 

ANFIS uses a hybrid learning rule with a combination of gradient descent and least 
squares estimate [13]. Assuming a single output ANFIS represented by  

)S,I(Foutput =        (24) 

where I is the set of input variables and S is the set of parameters, if there exist a function 
H such that the composite function H � F is linear in some of the elements of S, then 
these elements can be identified by the least squares method [13]. More formally, the 
parameter set S can be decomposed into two sets: 

21 SSS ⊕=  (where ⊕  represents direct sum),   (25) 

such that H � F is linear in the elements of 2S . Then upon applying H to equation (6.1), 
we have: 

)S,I(FH)output(H �=       (26) 

which is linear in the elements of 2S . Now the given values of elements of 1S , we can 
plug P training data sets into (6.3), and obtain a matrix equation: 

AX = B (X = unknown vector whose elements are parameters in 2S ) (27) 

If 2S =M, (M= number of linear parameters) then the dimensions of A, X and B are P ×  
M, M ×  1 and P ×  1 respectively. Since P is always greater than M, there is no exact 



solution to equation (6.4). Instead a Least Square Estimate (LSE) of X, X*, is sought to 
minimize the squared error 2BAX − . X* is computed using the pseudo-inverse of X: 

BAAAX TT 1* )( −=        (28) 

where TA  is the transpose of A and TT AAA 1)( − is the pseudo-inverse of A where AAT  is 
non-singular. Due to computational complexity, in ANFIS a sequential method is 
deployed as follows: 
 
Let the i-th row vector of matrix A defined in equation 6.4 be T

ia and i-th element of 
matrix B defined be T

ib , then X can be calculated iteratively using the following 
sequential formulae: 
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where iS  is often called the covariance matrix and the least squares estimate X* is equal 
to XP. The initial condition to bootstrap (6.6) are XO=0 and SO=� I, where � is a positive 
large number and I is the identity matrix of dimension M ×  M. For a multi output ANFIS, 
(6.6) is still applicable except the ),( SIFoutput = will become a column vector. Each 
epoch of this hybrid learning procedure is composed of a forward pass and a backward 
pass. In the forward pass, we have to supply the input data and functional signals go 
forward to calculate each node output until the matrices A and B in (6.4) are obtained, and 
the parameters in 2S  are identified by the sequential least squares formulae given in (6.6). 
After identifying parameters in 2S , the functional signals keep going forward till the error 
measure is calculated. In the backward pass, the error rates propagate from the output 
layer to the input layers, and the parameters in 1S  are updated by the gradient method 
given by 

α
ηα∆

∂
∂−= E        (30) 

where α  is the generic parameter, η  is a learning rate and E the error measure. For given 
fixed values of parameters in 1S , the parameters in 2S  thus found are guaranteed to be the 
global optimum point in the 2S  parameter space due to the choice of the squared error 
measure. 
 
The procedure mentioned above is mainly for offline learning version. However, the 
procedure can be modified for an online version by formulating the squared error 
measure as a weighted version that gives higher weighting factors to more recent data 
pairs. This amounts to the addition of a forgetting factor � to (29). 
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The value of � is between 0 and 1. The smaller the � is, faster the effects of old data 
decay. However, a smaller � sometimes causes numerical instability and should be 
avoided. 
 

2.4 DIFFERENCE BOOSTING NEURAL NETWORK (DBNN) 

DBNN is based on the Bayes principle that assumes the clustering of attribute values 
while boosting the attribute differences [25]. Boosting is an iterative process by which the 
network places emphasis on misclassified examples in the training set until it is correctly 
classified. The method considers the error produced by each example in the training set in 
turn and updates the connection weights associated to the probability P (UmCk) of each 
attribute of that example (Um is the attribute value and Ck a particular class in k number of 
different classes in the dataset). In this process, the probability density of identical 
attribute values flattens out and the differences get boosted up. Instead of the serial 
classifiers used in the AdaBoost algorithm, DBNN approach uses the same classifier 
throughout the training process. An error function is defined for each of the miss 
classified examples based on it distance from the computed probability of its nearest 
rival. The enhancement to the attribute is done such that the error produced by each 
example decides the correction to its associated weights. Since it is likely that more than 
one class would be sharing at least some of the same attribute values, this would lead to 
competitive update of their attribute weights, until either the classifier figures out the 
correct class or the number of iterations are completed.  The net effect of this would be 
that the classifier would become more and more dependent on the differences in the 
examples rather than their similarities. 

3. EXPERIMENTATION SETUP AND RESULTS 

We considered 7 year’s months stock data for Nasdaq-100 Index and 4 year’s for NIFTY 
index. Our target is to develop efficient forecast models that could predict the index value 
of the following trade day based on the opening, closing and maximum values of the 
same on a given day. The training and test patterns for both the indices (scaled values) 
are illustrated in Figures 1 and 2. For the Nasdaq-100index the data sets were represented 
by the ‘opening value’, ‘low value’ and ‘high value’. NIFTY index data sets were 
represented by ‘opening value’, ‘low value’, ‘high value’ and ‘closing value’. We used 
the same training and test data sets to evaluate the different connectionist models. More 
details are reported in the following sections. Experiments were carried out on a Pentium 
IV, 1.5 GHz Machine with 256 MB RAM and the codes were executed using MATLAB 
(ANN, ANFIS) and C++ (SVM, DBNN). Test data was presented to the trained 
connectionist network and the output from the network was compared with the actual 
index values in the time series. 
 



The assessment of the prediction performance of the different connectionist paradigms 
were done by quantifying the prediction obtained on an independent data set. The 
maximum absolute percentage error (MAP) and mean absolute percentage error (MAPE) 
were used to study the performance of the trained forecasting model for the test data. 

MAP is defined as follows: 
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• ANN – LM algorithm 

We used a feedforward neural network with 4 input nodes and a single hidden layer 
consisting of 26 neurons. We used tanh-sigmoidal activation function for the hidden 
neurons. The training was terminated after 50 epochs and it took about 4 seconds to train 
each dataset.  

• Neuro-fuzzy training 

We used 3 triangular membership functions for each of the input variable and the 27 if-
then fuzzy rules were learned for the Nasdaq-100 index and 81 if-then fuzzy rules for the 
NIFTY index. Training was terminated after 12 epochs and it took about 3 seconds to 
train each dataset. 

• Support Vector Machines and Difference Boosting Neural Network 

Both SVM and DBNN took less than I second to learn the two data sets. 

• Performance and Results Achieved 
Table 1 summarizes the training and test results achieved for the two stock indices using 
the four different approaches. Figures 3 and 4 depict the test results for the one day ahead 
prediction of Nasdaq-100 index and NIFTY index respectively.   



 

Figure 3. Test results showing the performance of the different methods for modeling 
Nasdaq-100 index 

 

Figure 4. Test results showing the performance of the different methods for modeling 
NIFTY index 

 

 

 



 

Table 1:  Empirical comparison (training and test) of four learning methods 

SVM Neuro-Fuzzy ANN-LM DBNN 
 

Training results (RMSE) 

Nasdaq-100 0.02612 0.02210 0.02920 0.02929 

NIFTY 0.01734 0.01520 0.01435 0.0174 

 Testing results (RMSE) 

Nasdaq-100 0.01804 0.01830 0.02844 0.02864 

NIFTY 0.01495 0.01271 0.01227 0.02252 

Table 2:  Statistical analysis of four learning methods (test data)  

SVM Neuro-Fuzzy ANN-LM DBNN 
 

Nasdaq-100 

Correlation 
coefficient 0.9977 0.9976 0.9955 0.9940 

MAP 481.502 520.842 481.717 116.987 
MAPE 7.170 7.615 9.032 9.429 

 NIFTY 

Correlation 
coefficient 0.9968 0.9967 0.9968 0.9890 

MAP 72.53 40.37 73.94 37.99 
MAPE 4.416 3.320 3.353 5.086 

4.  CONCLUSIONS 

In this paper, we have demonstrated how the chaotic behavior of stock indices could be 
well represented by connectionist paradigms. Empirical results on the two data sets using 
four different models clearly reveal the efficiency of the proposed techniques. In terms of 
RMSE values, for Nasdaq-100 index, SVM performed marginally better than other 
models and for NIFTY index, ANN-LM approach gave the lowest generalization RMSE 
values. For both data sets, SVM has the lowest training time.  For Nasdaq-100 index 



SVM has the highest correlation coefficient and lowest value of MAPE but the lowest 
MAP value was for DBNN. Highest correlation coefficient was shared by SVM and 
ANN-LM approach for NIFTY index but the lowest MAP value was for the neuro-fuzzy 
approach. It is interesting to note that for predicting both index values, DBNN has the 
lowest MAP value. 
 
Our research was to predict the share price for the following trade day based on the 
opening, closing and maximum values of the same on a given day.  Our experimentation 
results indicate that the most prominent parameters that affect share prices are their 
immediate opening and closing values. The fluctuations in the share market are chaotic in 
the sense that they heavily depend on the values of their immediate forerunning 
fluctuations. Long-term trends exist, but are slow variations and this information is useful 
for long-term investment strategies. Our study focus on short term, on floor trades, in 
which the risk is higher.  However, the results of our study show that even in the 
seemingly random fluctuations, there is an underlying deterministic feature that is 
directly enciphered in the opening, closing and maximum values of the index of any day 
making predictability possible. 
 
Empriical results also shows that there are various advantages and disadvantages for the 
different techniques considered. Our future research will be oriented towards determining 
the optimal way to combine the different intelligent systems using an ensemble approach 
[12] so as to compliment the advantages and disadvantages of the different paradigms 
considered. 
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