
Modeling Chaotic Behavior of Stock Indices Using Intelligent
Paradigms

Ajith Abraham, Ninan Sajith Philip1 and P. Saratchandran2

Department of Computer Science, Oklahoma State University,
Tulsa, Oklahoma 74106, USA, Email: ajith.abraham@ieee.org

1Department of Physics, Cochin University of Science and Technology, India,
Email: nsp@stthom.ernet.in

2School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore 639798, E-mail: epsarat@ntu.edu.sg

Abstract

The use of intelligent systems for stock market predictions has been widely established.
In this paper, we investigate how the seemingly chaotic behavior of stock markets could
be well represented using several connectionist paradigms and soft computing
techniques. To demonstrate the different techniques, we considered Nasdaq-100 index of
Nasdaq Stock MarketSM and the S&P CNX NIFTY stock index. We analyzed 7 year’s
Nasdaq 100 main index values and 4 year’s NIFTY index values. This paper investigates
the development of a reliable and efficient technique to model the seemingly chaotic
behavior of stock markets. We considered an artificial neural network trained using
Levenberg-Marquardt algorithm, Support Vector Machine (SVM), Takagi-Sugeno neuro-
fuzzy model and a Difference Boosting Neural Network (DBNN). This paper briefly
explains how the different connectionist paradigms could be formulated using different
learning methods and then investigates whether they can provide the required level of
performance, which are sufficiently good and robust so as to provide a reliable forecast
model for stock market indices. Experiment results reveal that all the connectionist
paradigms considered could represent the stock indices behavior very accurately.

Key words: connectionist paradigm, support vector machine, neural network, difference
boosting, neuro-fuzzy, stock market.

1. INTRODUCTION

Prediction of stocks is generally believed to be a very difficult task. The process behaves
more like a random walk process and time varying. The obvious complexity of the
problem paves way for the importance of intelligent prediction paradigms. During the last
decade, stocks and futures traders have come to rely upon various types of intelligent
systems to make trading decisions [1][3][7][11][18][19][26][23][28]. Several intelligent
systems have in recent years been developed for modelling expertise, decision support
and complicated automation tasks etc [28][9][15][5][24][16][29][4][17]. In this paper, we
analysed the seemingly chaotic behaviour of two well-known stock indices namely
Nasdaq-100 index of NasdaqSM [21] and the S&P CNX NIFTY stock index [22].

Nasdaq-100 index reflects Nasdaq's largest companies across major industry groups,
including computer hardware and software, telecommunications, retail/wholesale trade
and biotechnology [21]. The Nasdaq-100 index is a modified capitalization-weighted
index, which is designed to limit domination of the Index by a few large stocks while
generally retaining the capitalization ranking of companies. Through an investment in
Nasdaq-100 index tracking stock, investors can participate in the collective performance
of many of the Nasdaq stocks that are often in the news or have become household
names. Similarly, S&P CNX NIFTY is a well-diversified 50 stock index accounting for
25 sectors of the economy [22]. It is used for a variety of purposes such as benchmarking
fund portfolios, index based derivatives and index funds. The CNX Indices are computed
using market capitalisation weighted method, wherein the level of the Index reflects the
total market value of all the stocks in the index relative to a particular base period. The
method also takes into account constituent changes in the index and importantly
corporate actions such as stock splits, rights, etc without affecting the index value.

Figure 1. Training and Test data sets for Nasdaq-100 Index (b) NIFTY index

Our research is to investigate the performance analysis of four different connectionist
paradigms for modelling the Nasdaq-100 and NIFTY stock market indices. The four
different techniques considered are an artificial neural network trained using the
Levenberg-Marquardt algorithm [6], support vector machine [27], difference boosting
neural network [25] and a Takagi-Sugeno fuzzy inference system learned using a neural
network algorithm (neuro-fuzzy model) [13]. Neural networks are excellent forecasting
tools and can learn from scratch by adjusting the interconnections between layers.
Support vector machines offer excellent learning capability based on statistical learning
theory. Fuzzy inference systems are excellent for decision making under uncertainty.
Neuro-fuzzy computing is a popular framework wherein neural network training
algorithms are used to fine-tune the parameters of fuzzy inference systems. We analysed
the Nasdaq-100 index value from 11 January 1995 to 11 January 2002 [21] and the

NIFTY index from 01 January 1998 to 03 December 2001 [22]. For both the indices, we
divided the entire data into almost two equal parts. No special rules were used to select
the training set other than ensuring a reasonable representation of the parameter space of
the problem domain. The complexity of the training and test data sets for both indices are
depicted in Figures 1 and 2 respectively. In Section 2 we briefly describe the different
connectionist paradigms followed by experimentation setup and results in Section 3.
Some conclusions are also provided towards the end.

Figure 2. Training and Test data sets for NIFTY index

2. INTELLIGENT SYSTEMS: A CONNECTIONIST MODEL APPROACH

Connectionist models “learn” by adjusting the interconnections between layers. When the
network is adequately trained, it is able to generalize relevant output for a set of input
data. Learning typically occurs by example through training, where the training algorithm
iteratively adjusts the connection weights (synapses). In an artificial neural network
learning occurs by the iterative updating of connection weights using a learning
algorithm.

2.1 ARTIFICIAL NEURAL NETWORKS

The artificial neural network (ANN) methodology enables us to design useful nonlinear
systems accepting large numbers of inputs, with the design based solely on instances of
input-output relationships. For a training set T consisting of n argument value pairs and
given a d-dimensional argument x and an associated target value t will be approximated
by the neural network output. The function approximation could be represented as

}:1:),{(nitxT ii ==

In most applications the training set T is considered to be noisy and our goal is not to
reproduce it exactly but rather to construct a network function that generalizes well to
new function values. We will try to address the problem of selecting the weights to learn

the training set. The notion of closeness on the training set T is typically formalized
through an error function of the form

2

1
�

=
−=

n

i
iiT tyψ (1)

where yi is the network output. Our target is to find a neural network � such that the
output yi = � (xi, w) is close to the desired output ti for the input xi (w = strengths of
synaptic connections). The error �T = �T (w) is a function of w because y = � depends
upon the parameters w defining the selected network �. The objective function �T (w) for
a neural network with many parameters defines a highly irregular surface with many
local minima, large regions of little slope and symmetries. The common node functions
(tanh, sigmoidal, logistic etc) are differentiable to arbitrary order through the chain rule
of differentiation, which implies that the error is also differentiable to arbitrary order.
Hence we are able to make a Taylor's series expansion in w for �T. We shall first discuss
the algorithms for minimizing �T by assuming that we can truncate a Taylor's series
expansion about a point wo that is possibly a local minimum. The gradient (first partial
derivative) vector is represented by

w
i

T
wT w

)w(g �
�

�
�
�

�

∂
∂

=∇=
ψψ (2)

The gradient vector points in the direction of steepest increase of �T and its negative
points in the direction of steepest decrease. The second partial derivative also known as
Hessian matrix is represented by H

ji

T
2

T
2

ij ww
)w(

)w()w(H)w(H
∂∂

∂
=∇==

ψψ (3)

The Taylor's series for �T, assumed twice continuously differentiable about w0, can now
be given as

)(

))(()(
2
1

)()()()(

20

000000

wwO

wwwHwwwwwgww TTT
TT

−+

−−+−+=ψψ
 (4)

where O (�) denotes a term that is of zero-order in small � such that 0
)(O

lim
0

=
→ δ

δ
δ

.

If for example there is continuous derivative at w0, then the remainder term is of order
30ww − and we can reduce (4) to the following quadratic model

)ww)(w(H)ww(
2
1

)ww()w(g)w()w(m 00T00T00
T −−+−+= ψ (5)

Taking the gradient in the quadratic model of (5) yields

)ww(H)w(gm 00 −+=∇ (6)

If we set the gradient g=0 and solving for the minimizing w* yields

gHww 10* −−= (7)

The model m can now be expressed in terms of minimum value of w* as

)ww)(w(H)ww(
2
1

)w(m)w(m

)w(gH)w(g
2
1

)w(m)w(m

T

01T00

∗∗∗∗

−∗

−−+=

+=
 (8)

a result that follows from (5) by completing the square or recognizing that g(w*)=0.
Hence starting from any initial value of the weight vector, we can in the quadratic case
move one step to the minimizing value when it exists. This is known as Newton's
approach and can be used in the non-quadratic case where H is the Hessian and is
positive definite.

2.1.1 LEVENBERG-MARQUARDT ALGORITHM

The Levenberg-Marquardt (LM) algorithm [6] exploits the fact that the error function is a
sum of squares as given in (1). Introduce the following notation for the error vector and
its Jacobian with respect to the network parameters w

njpi
w

e
JJ

i

j
ij :1,:1, ==

∂
∂

== (9)

The Jacobian matrix is a large p × n matrix, all of whose elements are calculated directly
by backpropagation technique. The p dimensional gradient g for the quadratic error
function can be expressed as

�
=

=∇=
n

1i
ii Je)w(ee)w(g

and the Hessian matrix by

��
==

�
�

	

�
�

�

∂∂
∂∂

+
∂∂

∂
=

∂∂
∂=

∂∂
∂

==
n

k
ji

kk

ji

k
k

n

k ji

k

ji

T
ij ww

ee
ww

e
e

ww
e

ww
HH

1

2

1

222

2
1ψ

�
=

�
�
�

	

�
�
�

�

+
∂∂

∂

=
n

1k

jkJikJ
jwiw

ke2

ke
 (10)

Hence defining i

n

1i

2
i eeD �

=
∇= yields the expression

H (w) = JJT + D (11)

The key to the LM algorithm is to approximate this expression for the Hessian by
replacing the matrix D involving second derivatives by the much simpler positively
scaled unit matrix I∈ . The LM is a descent algorithm using this approximation in the
form

[])(, 1
1

kkkkk
T

k wgMwwIJJM α−=∈+= +
−

 (12)

Successful use of LM requires approximate line search to determine the rate �k. The
matrix JJT is automatically symmetric and non-negative definite. The typically large size
of J may necessitate careful memory management in evaluating the product JJT. Hence
any positive ∈ will ensure that Mk is positive definite, as required by the descent
condition. The performance of the algorithm thus depends on the choice of ∈.

When the scalar ∈ is zero, this is just Newton's method, using the approximate Hessian
matrix. When ∈ is large, this becomes gradient descent with a small step size. As
Newton's method is more accurate, ∈ is decreased after each successful step (reduction in
performance function) and is increased only when a tentative step would increase the
performance function. By doing this, the performance function will always be reduced at
each iteration of the algorithm.

2.2 SUPPORT VECTOR MACHINES (SVM)

Support Vector Machines (SVMs) [27] combine several techniques from statistics,
machine learning and neural networks. SVM perform structural risk minimization. They
create a classifier with minimized VC (Vapnik and Chervonenkis) dimension. If the VC
Dimension is low, the expected probability of error is low as well, which means good
generalization. SVM has the common capability to separate the classes in the linear way.
However, SVM also has another specialty that it is using a linear separating hyperplane
to create a classifier, yet some problems can’t be linearly separated in the original input
space. Then SVM uses one of the most important ingredients called kernels, i.e., the
concept of transforming linear algorithms into nonlinear ones via a map into feature
spaces. Figures 3 and 4 illustrate two categories of data using Y+ and Y- symbols.

y = w.x – b = –1

�

�
�

� �
� �

�

�

�
� �

�

�

�

�

�

� �

�

�

− −− − −
−−

− −
−−

−
−

−

−
−

−
−

−

���������������	
��������������

w

Margin =
2

2
w

�

�
�

� �
� �

�

�

�
� �

�

�

�

�

�

� �

�

�

− −
− − −

−−
− −

−−

−
−

−

−
−

−
−

−

���������������	
��������������

w

���������������	

Margin =
2

2
w

−
−

− −

�
�

�

�

−
−

� Y
+

Y
+

Y−
Y−

Figure 3: The linearly separable case. Figure 4: The linearly inseparable case.

2.2.1 �������	
� �

We consider N training data points {(x1, y1), (x2, y2),…..,(xN,yN)} where xi∈ Rd and yi ∈
{±1}. We would like to explain a linear separating hyperplane classifier:

).sgn()(bxwxf −= (13)

Furthermore, we want this hyperplane to have the maximum separating margin with
respect to the two classes. Specifically, we want to find this hyperplane HP : y = w.x – b
= 0 and two hyperplanes parallel to it and with equal distances to it,

HP1 : y = w.x – b = +1 and HP2 : y = w.x – b = – 1 (14)

with the condition that there are no data points between HP1 and HP2, and the distance
between HP1 and HP2 is maximized.
For any separating plane HP and the corresponding HP1 and HP2, we can always
normalize the coefficients vector w so that HP1 will be y = w.x – b = +1, and HP2 will be
y = w.x – b = –1.
Our aim is to maximize the distance between HP1 and HP2. So there will be some
positive examples on HP1 and some negative examples on HP2. These examples are
called support vectors because only they participate in the definition of the separating
hyperplane, and other examples can be removed and/or moved around as long as they
don’t cross the planes HP1 and HP2.

Recall that the 2-D, the distance from a point (x0, y0) to a line Ax+Bx+C = 0 is

22
00

BA

CByAx

+

++ . Similarly, the distance of a point on HP1 to HP : w.x – b = 0 is

ww

bxw 1.
=

− , and the distance between HP1 and HP2 is
w
2 . So, in order to maximize the

distance, we should minimize wTww = with the condition that there are no data points

between HP1 and HP2 w.x – b ≥ +1, for positive example yi = +1 and w.x – b ≥ -1, for
negative example yi = -1

These two condition can be combined into: yi(w.x – b) ≥ 1
Now the problem can be formulated as

wTw
bw 2

1

,
min subject to yi(w.x – b) ≥ 1 (15)

This is a convex, quadratic programming problem (in w, b) in a convex set.

Introducing Lagrange multipliers α1, α2, ….αn≥ 0, we have the following Lagrangian:

� �
= =

+−−≡
N

i

N

i
iiii

T bxwywwbwL
1 1

.).(
2
1

),,(ααα (16)

2.4.2 NON LINEAR SVM
When the two classes are non-linearly distributed then SVM can transform the data
points to another high dimensional space such that the data points will be linearly
separable. Let the transformation be Φ(⋅⋅⋅⋅). In the high dimensional space, we solve

� �
=

ΦΦ−≡
N

i ji
jijijiiD xxyyL

1 ,

)().(
2
1 ααα (17)

Suppose, in addition, Φ(xi)⋅⋅⋅⋅Φ(xj) = k(xi,xj). That is, the dot product in that high
dimensional space is equivalent to a kernel function of the input space. So, we need not
be explicit about the transformation Φ(⋅⋅⋅⋅) as long as we know that the kernel function k(xi,
xj) is equivalent to the dot product of some other high dimensional space.
The Mercers’s condition can be used to determine if a function can be used as a kernel
function:

There exists a mapping Φ and an expansion

� ΦΦ=
i

ii yxyxK)()(),((18)

if and only if, for any g(x) such that � dxxg 2)(is finite, then

� ≥ .0)()(),(dxdyygxgyxK (19)

The foundations of SVM have been developed by Vapnik [27] and are gaining popularity
due to many attractive features, and promising empirical performance. The possibility of
using different kernels allows viewing learning methods like Radial Basis Function
Neural Network (RBFNN) or multi-layer Artificial Neural Networks (ANN) as particular
cases of SVM despite the fact that the optimized criteria are not the same [14]. While
ANNs and RBFNN optimizes the mean squared error dependent on the distribution of all
the data, SVM optimizes a geometrical criterion, which is the margin and is sensitive
only to the extreme values and not to the distribution of the data into the feature space.
The SVM approach transforms data into a feature space F that usually has a huge
dimension. It is interesting to note that SVM generalization depends on the geometrical
characteristics of the training data, not on the dimensions of the input space. Training a
support vector machine (SVM) leads to a quadratic optimization problem with bound
constraints and one linear equality constraint. Vapnik [27] shows how training a SVM for
the pattern recognition problem leads to the following quadratic optimization problem

Minimize: � ��
− ==

+−=
l

i
ji

l

j
jiji

l

i
i xxkyyW

1 11

),(
2
1

)(αααα (20)

Subject to
Ci

y

i

l

i
ii

≤≤∀

�
=

α

α

0:
1 (21)

Where l is the number of training examples α is a vector of l variables and each
component iα corresponds to a training example (xi, yi). The solution of (1) is the vector

*α for which (1) is minimized and (2) is fulfilled. We used the SVMTorch for simulating
the SVM learning algorithm [10].

2.3 NEURO-FUZZY SYSTEM

Neuro Fuzzy (NF) computing is a popular framework for solving complex problems [2].
If we have knowledge expressed in linguistic rules, we can build a Fuzzy Inference
System (FIS) [8], and if we have data, or can learn from a simulation (training) then we
can use ANNs. For building a FIS, we have to specify the fuzzy sets, fuzzy operators and
the knowledge base. Similarly for constructing an ANN for an application the user needs
to specify the architecture and learning algorithm. An analysis reveals that the drawbacks
pertaining to these approaches seem complementary and therefore it is natural to consider
building an integrated system combining the concepts. While the learning capability is an
advantage from the viewpoint of FIS, the formation of linguistic rule base will be
advantage from the viewpoint of ANN.

Figure 5 depicts the 6- layered architecture of multiple output ANFIS and the
functionality of each layer is as follows:

Layer-1. Every node in this layer has a node function.)x(iA
1
iO µ= , for i =1, 2 or

)y(2iB
1
iO −= µ , for i=3,4,…. 1

iO is the membership grade of a fuzzy set A (= A1, A2, B1

or B2) and it specifies the degree to which the given input x (or y) satisfies the quantifier
A. Usually the node function can be any parameterized function. A gaussian membership
function is specified by two parameters c (membership function center) and �
(membership function width).

guassian (x, c, �) = ()2
2
1

σ
cx

e
−− . Parameters in this layer are referred to premise parameters.

Layer-2. Every node in this layer multiplies the incoming signals and sends the product
out. Each node output represents the firing strength of a rule.

......2,1i),y(iB)x(iAiw2
iO =×== µµ , In general any T-norm operator that perform

fuzzy "AND" can be used as the node function in this layer.

Layer-3. The rule consequent parameters are determined in this layer.

iiii
3
i ryqxpfO ++== , where { }ir,iq,ip are the rule consequent parameters.

Layer-4. Every node i in this layer is with a node function

)ryqxp(wfwO iiiiii
4
i ++== �� , where iw is the output of layer 2

Layer-5. Every node in this layer aggregates all the firing strengths of rules

�=
i

i
5
i wO (22)

Layer-6. Every i-th node in this layer calculates the individual outputs.

....2,1i,
w

fw
OutputO

i
i

ii6
i ===

�

�
. (23)

B1

B2

C1

C2

A2

D1

x

y

x

y

premise
 parameters

consequent
 parameters

A1

D2

W1

W2

W3

W4

Oi
2Oi

1 Oi
3 Oi

4

/

/

Output 1

Output 2

Oi
5 Oi

6

ΣΣΣΣwi

ΣΣΣΣwi

ΣΣΣΣwifi

ΣΣΣΣwifi

fi

fi

Figure 5. Architecture of ANFIS with multiple outputs

ANFIS uses a hybrid learning rule with a combination of gradient descent and least
squares estimate [13]. Assuming a single output ANFIS represented by

)S,I(Foutput = (24)

where I is the set of input variables and S is the set of parameters, if there exist a function
H such that the composite function H � F is linear in some of the elements of S, then
these elements can be identified by the least squares method [13]. More formally, the
parameter set S can be decomposed into two sets:

21 SSS ⊕= (where ⊕ represents direct sum), (25)

such that H � F is linear in the elements of 2S . Then upon applying H to equation (6.1),
we have:

)S,I(FH)output(H �= (26)

which is linear in the elements of 2S . Now the given values of elements of 1S , we can
plug P training data sets into (6.3), and obtain a matrix equation:

AX = B (X = unknown vector whose elements are parameters in 2S) (27)

If 2S =M, (M= number of linear parameters) then the dimensions of A, X and B are P ×
M, M × 1 and P × 1 respectively. Since P is always greater than M, there is no exact

solution to equation (6.4). Instead a Least Square Estimate (LSE) of X, X*, is sought to
minimize the squared error 2BAX − . X* is computed using the pseudo-inverse of X:

BAAAX TT 1*)(−= (28)

where TA is the transpose of A and TT AAA 1)(− is the pseudo-inverse of A where AAT is
non-singular. Due to computational complexity, in ANFIS a sequential method is
deployed as follows:

Let the i-th row vector of matrix A defined in equation 6.4 be T

ia and i-th element of
matrix B defined be T

ib , then X can be calculated iteratively using the following
sequential formulae:

1,........,1,0,
1

)(

11

11
1

11111

−=
+

−=

−+=

++

++
+

+++++

Pi
aSa

SaaS
SS

XabaSXX

ii
T
i

i
T
iii

ii

i
T
i

T
iiiii

 (29)

where iS is often called the covariance matrix and the least squares estimate X* is equal
to XP. The initial condition to bootstrap (6.6) are XO=0 and SO=� I, where � is a positive
large number and I is the identity matrix of dimension M × M. For a multi output ANFIS,
(6.6) is still applicable except the),(SIFoutput = will become a column vector. Each
epoch of this hybrid learning procedure is composed of a forward pass and a backward
pass. In the forward pass, we have to supply the input data and functional signals go
forward to calculate each node output until the matrices A and B in (6.4) are obtained, and
the parameters in 2S are identified by the sequential least squares formulae given in (6.6).
After identifying parameters in 2S , the functional signals keep going forward till the error
measure is calculated. In the backward pass, the error rates propagate from the output
layer to the input layers, and the parameters in 1S are updated by the gradient method
given by

α
ηα∆

∂
∂−= E (30)

where α is the generic parameter, η is a learning rate and E the error measure. For given
fixed values of parameters in 1S , the parameters in 2S thus found are guaranteed to be the
global optimum point in the 2S parameter space due to the choice of the squared error
measure.

The procedure mentioned above is mainly for offline learning version. However, the
procedure can be modified for an online version by formulating the squared error
measure as a weighted version that gives higher weighting factors to more recent data
pairs. This amounts to the addition of a forgetting factor � to (29).

1P,........,1,0i
aSa

SaaS
S

1
S

)Xab(aSXX

1ii
T

1i

i
T

1i1ii
i1i

i
T

1i
T

1i1i1ii1i

−=
�
�

�

�

�
�

�

�

+
−=

−+=

++

++
+

+++++

λλ

 (31)

The value of � is between 0 and 1. The smaller the � is, faster the effects of old data
decay. However, a smaller � sometimes causes numerical instability and should be
avoided.

2.4 DIFFERENCE BOOSTING NEURAL NETWORK (DBNN)

DBNN is based on the Bayes principle that assumes the clustering of attribute values
while boosting the attribute differences [25]. Boosting is an iterative process by which the
network places emphasis on misclassified examples in the training set until it is correctly
classified. The method considers the error produced by each example in the training set in
turn and updates the connection weights associated to the probability P (UmCk) of each
attribute of that example (Um is the attribute value and Ck a particular class in k number of
different classes in the dataset). In this process, the probability density of identical
attribute values flattens out and the differences get boosted up. Instead of the serial
classifiers used in the AdaBoost algorithm, DBNN approach uses the same classifier
throughout the training process. An error function is defined for each of the miss
classified examples based on it distance from the computed probability of its nearest
rival. The enhancement to the attribute is done such that the error produced by each
example decides the correction to its associated weights. Since it is likely that more than
one class would be sharing at least some of the same attribute values, this would lead to
competitive update of their attribute weights, until either the classifier figures out the
correct class or the number of iterations are completed. The net effect of this would be
that the classifier would become more and more dependent on the differences in the
examples rather than their similarities.

3. EXPERIMENTATION SETUP AND RESULTS

We considered 7 year’s months stock data for Nasdaq-100 Index and 4 year’s for NIFTY
index. Our target is to develop efficient forecast models that could predict the index value
of the following trade day based on the opening, closing and maximum values of the
same on a given day. The training and test patterns for both the indices (scaled values)
are illustrated in Figures 1 and 2. For the Nasdaq-100index the data sets were represented
by the ‘opening value’, ‘low value’ and ‘high value’. NIFTY index data sets were
represented by ‘opening value’, ‘low value’, ‘high value’ and ‘closing value’. We used
the same training and test data sets to evaluate the different connectionist models. More
details are reported in the following sections. Experiments were carried out on a Pentium
IV, 1.5 GHz Machine with 256 MB RAM and the codes were executed using MATLAB
(ANN, ANFIS) and C++ (SVM, DBNN). Test data was presented to the trained
connectionist network and the output from the network was compared with the actual
index values in the time series.

The assessment of the prediction performance of the different connectionist paradigms
were done by quantifying the prediction obtained on an independent data set. The
maximum absolute percentage error (MAP) and mean absolute percentage error (MAPE)
were used to study the performance of the trained forecasting model for the test data.

MAP is defined as follows:

�
�
�

	

�
�
�

�

×

−
= 100

i,predictedP

i,predictedPi,actualP
maxMAP , where Pactual, i is the actual index value on

day i and Ppredicted, i is the forecast value of the index on that day. Similarly MAPE is
given as

100
1

1 ,

,, ×
�
�
�

�

�
�
�

� −
= �

=

N

i iactual

ipredictediactual

P

PP

N
MAPE , where N represents the total number of

days.

• ANN – LM algorithm

We used a feedforward neural network with 4 input nodes and a single hidden layer
consisting of 26 neurons. We used tanh-sigmoidal activation function for the hidden
neurons. The training was terminated after 50 epochs and it took about 4 seconds to train
each dataset.

• Neuro-fuzzy training

We used 3 triangular membership functions for each of the input variable and the 27 if-
then fuzzy rules were learned for the Nasdaq-100 index and 81 if-then fuzzy rules for the
NIFTY index. Training was terminated after 12 epochs and it took about 3 seconds to
train each dataset.

• Support Vector Machines and Difference Boosting Neural Network

Both SVM and DBNN took less than I second to learn the two data sets.

• Performance and Results Achieved
Table 1 summarizes the training and test results achieved for the two stock indices using
the four different approaches. Figures 3 and 4 depict the test results for the one day ahead
prediction of Nasdaq-100 index and NIFTY index respectively.

Figure 3. Test results showing the performance of the different methods for modeling
Nasdaq-100 index

Figure 4. Test results showing the performance of the different methods for modeling
NIFTY index

Table 1: Empirical comparison (training and test) of four learning methods

SVM Neuro-Fuzzy ANN-LM DBNN

Training results (RMSE)

Nasdaq-100 0.02612 0.02210 0.02920 0.02929

NIFTY 0.01734 0.01520 0.01435 0.0174

 Testing results (RMSE)

Nasdaq-100 0.01804 0.01830 0.02844 0.02864

NIFTY 0.01495 0.01271 0.01227 0.02252

Table 2: Statistical analysis of four learning methods (test data)

SVM Neuro-Fuzzy ANN-LM DBNN

Nasdaq-100

Correlation
coefficient 0.9977 0.9976 0.9955 0.9940

MAP 481.502 520.842 481.717 116.987
MAPE 7.170 7.615 9.032 9.429

 NIFTY

Correlation
coefficient 0.9968 0.9967 0.9968 0.9890

MAP 72.53 40.37 73.94 37.99
MAPE 4.416 3.320 3.353 5.086

4. CONCLUSIONS

In this paper, we have demonstrated how the chaotic behavior of stock indices could be
well represented by connectionist paradigms. Empirical results on the two data sets using
four different models clearly reveal the efficiency of the proposed techniques. In terms of
RMSE values, for Nasdaq-100 index, SVM performed marginally better than other
models and for NIFTY index, ANN-LM approach gave the lowest generalization RMSE
values. For both data sets, SVM has the lowest training time. For Nasdaq-100 index

SVM has the highest correlation coefficient and lowest value of MAPE but the lowest
MAP value was for DBNN. Highest correlation coefficient was shared by SVM and
ANN-LM approach for NIFTY index but the lowest MAP value was for the neuro-fuzzy
approach. It is interesting to note that for predicting both index values, DBNN has the
lowest MAP value.

Our research was to predict the share price for the following trade day based on the
opening, closing and maximum values of the same on a given day. Our experimentation
results indicate that the most prominent parameters that affect share prices are their
immediate opening and closing values. The fluctuations in the share market are chaotic in
the sense that they heavily depend on the values of their immediate forerunning
fluctuations. Long-term trends exist, but are slow variations and this information is useful
for long-term investment strategies. Our study focus on short term, on floor trades, in
which the risk is higher. However, the results of our study show that even in the
seemingly random fluctuations, there is an underlying deterministic feature that is
directly enciphered in the opening, closing and maximum values of the index of any day
making predictability possible.

Empriical results also shows that there are various advantages and disadvantages for the
different techniques considered. Our future research will be oriented towards determining
the optimal way to combine the different intelligent systems using an ensemble approach
[12] so as to compliment the advantages and disadvantages of the different paradigms
considered.

REFERENCES

[1] Abraham A., Nath B and Mahanti P K, Hybrid Intelligent Systems for Stock Market
Analysis, Computational Science, Springer-Verlag Germany, Vassil N Alexandrov et al
(Editors), USA, pp. 337-345, May 2001.

[2] Abraham A., Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques, Connectionist
Models of Neurons, Learning Processes, and Artificial Intelligence, Springer-Verlag
Germany, Jose Mira and Alberto Prieto (Eds.), Granada, Spain, pp. 269-276, 2001.

[3] Abraham A., Philip N.S., Nath B. and Saratchandran P, Performance Analysis of
Connectionist Paradigms for Modeling Chaotic Behavior of Stock Indices, Second
International Workshop on Intelligent Systems Design and Applications, Computational
Intelligence and Applications, Dynamic Publishers Inc., USA, pp. 181-186, 2002.

[4] Berkeley A..R.. Nasdaq's technology floor: its president takes stock, IEEE Spectrum,
Volume: 34 Issue: 2 , pp. 66 –67, 1997.

[5] Bischi G.I. and Valori V., Nonlinear effects in a discrete-time dynamic model of a stock
market, Chaos, Solitons & Fractals 11(13): 2103-2121, 2000.

[6] Bishop C. M., Neural Networks for Pattern Recognition, Oxford: Clarendon Press, 1995.

[7] Chan W.S. and Liu W.N., Diagnosing shocks in stock markets of southeast Asia, Australia,
and New Zealand, Mathematics and Computers in Simulation 59(1-3): 223-232, 2002.

[8] Cherkassky V., Fuzzy Inference Systems: A Critical Review, Computational Intelligence:
Soft Computing and Fuzzy-Neuro Integration with Applications, Kayak O, Zadeh L A et al
(Eds.), Springer, pp.177-197, 1998.

[9] Cios K.J., Data Mining in Finance: Advances in Relational and Hybrid Methods,
Neurocomputing 36(1-4): 245-246, 2001.

[10] Collobert R. and Bengio S., SVMTorch: Support Vector Machines for Large-Scale
Regression Problems, Journal of Machine Learning Research, Volume 1, pages 143-160,
2001.

[11] Francis E.H. Tay and L.J. Cao, Modified support vector machines in financial time series
forecasting, Neurocomputing 48(1-4): 847-861, 2002.

[12] Hashem, S., Optimal Linear Combination of Neural Networks, Neural Network, Volume
10, No. 3. pp. 792-994, 1995.

[13] Jang J. S. R., Sun C. T. and Mizutani E., Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence, Prentice Hall Inc, USA,
1997.

[14] Joachims T., Making large-Scale SVM Learning Practical. Advances in Kernel Methods -
Support Vector Learning, B. Schölkopf and C. Burges and A. Smola (Eds.), MIT-Press,
1999.

[15] Kim K.J. and Han I., Genetic algorithms approach to feature discretization in artificial
neural networks for the prediction of stock price index, Expert Systems with Applications
19(2): 125-132, 2000

[16] Koulouriotis, D.E.; Diakoulakis, I.E.; Emiris, D.M, A fuzzy cognitive map-based stock
market model: synthesis, analysis and experimental results, The 10th IEEE International
Conference on Fuzzy Systems, Volume: 1, pp. 465 –468, 2001.

[17] LeBaron, B., Empirical regularities from interacting long- and short-memory investors in
an agent-based stock market, IEEE Transactions on Evolutionary Computation, Volume: 5
Issue: 5, pp. 442 –455, 2001.

[18] Leigh W., Modani N., Purvis R. and Roberts T., Stock market trading rule discovery using
technical charting heuristics, Expert Systems with Applications 23(2): 155-159, 2002.

[19] Leigh W., Purvis R. and Ragusa J.M., Forecasting the NYSE composite index with
technical analysis, pattern recognizer, neural network, and genetic algorithm: a case study
in romantic decision support, Decision Support Systems 32(4): 361-377, 2002.

[20] Masters T., Advanced Algorithms for Neural Networks: a C++ sourcebook, Wiley, New
York, 1995.

[21] Nasdaq Stock MarketSM: http://www.nasdaq.com

[22] National Stock Exchange of India Limited: http://www.nse-india.com

[23] Oh K.J. and Kim K.J., Analyzing stock market tick data using piecewise nonlinear model,
Expert Systems with Applications 22(3): 249-255, 2002.

[24] Palma-dos-Reis A. and Zahedi F., Designing personalized intelligent financial decision
support systems, Decision Support Systems 26(1): 31-47, 1999.

[25] Philip N.S. and Joseph K.B., Boosting the Differences: A Fast Bayesian classifier neural
network, Intelligent Data Analysis, IOS press, Netherlands, Volume 4, pp. 463-473, 2000.

[26] Quah T.S. and Srinivasan B., Improving returns on stock investment through neural
network selection, Expert Systems with Applications 17(4): 295-301, 1999.

[27] Vapnik V., The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

[28] Wang Y.F., Mining stock price using fuzzy rough set system, Expert Systems with
Applications 24(1): 13-23, 2002.

[29] Wuthrich, B., Cho, V., Leung, S., Permunetilleke, D., Sankaran, K., Zhang, J., Daily stock
market forecast from textual web data, IEEE International Conference on Systems, Man,
and Cybernetics, Volume: 3, Page(s): 2720 –2725, 1998.

