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Financial Forecasting Using Support Vector Machines
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The use of Support Vector Machines (SVMs) is
studied in financial forecasting by comparing it
with a multi-layer perceptron trained by the Back
Propagation (BP) algorithm. SVMs forecast better
than BP based on the criteria of Normalised Mean
Square Error (NMSE), Mean Absolute Error (MAE),
Directional Symmetry (DS), Correct Up (CP) trend
and Correct Down (CD) trend. S&P 500 daily price
index is used as the data set. Since there is no
structured way to choose the free parameters of
SVMs, the generalisation error with respect to the
free parameters of SVMs is investigated in this
experiment. As illustrated in the experiment, they
have little impact on the solution. Analysis of the
experimental results demonstrates that it is advan-
tageous to apply SVMs to forecast the financial
time series.
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1. Introduction

Financial time series forecasting is one of the most
challenging applications of modern time series fore-
casting. As explained by Deboeck and Yaser [1,2],
financial time series are inherently noisy, non-
stationary and deterministically chaotic. These
characteristics suggest that there is no complete
information that could be obtained from the past
behaviour of financial markets to fully capture the
dependency between the future price and that of
the past.
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There are two main categories in financial time
series forecasting: univariate analysis and multivari-
ate analysis. In multivariate analysis, any indicator,
whether it is related to the output directly or not,
can be incorporated as the input variable, while in
univariate analysis, the input variables are restricted
to the time series being forecasted. A general univar-
iate model that is commonly used is based on the
AutoRegressive Integrated Moving Average
(ARIMA) method. Compared to other multivariate
models, the performance of ARIMA is not satisfac-
tory because this model is parametric, and addition-
ally, it is developed on the assumption that the time
series being forecasted are linear and stationary.
These constraints are not consistent with the charac-
teristics of financial time series. Therefore, Artificial
Neural Network (ANN) assisted multivariate analy-
sis has become a dominant and popular tool in
recent years. The prediction performance is greatly
improved by the use of a neural network both in
terms of prediction metrics and trading metrics [3–
6]. It can be explained both in terms of the indicator
aspect, and the characteristics of the neural network.
Multivariate models can rely on greater information,
where not only the lagged time series being forecast,
but also technical indicators, fundamental indicators
or inter-market indicators, are combined to act as
predicators. Moreover, a neural network is more
effective in describing the dynamics of non-stationary
time series due to its unique non-parametric, non-
assumable, noise-tolerant and adaptive properties.
Neural networks are universal function approxima-
tors that can map any nonlinear function withouta
priori assumptions about the data.

However, a critical issue concerning neural net-
works is the over-fitting problem. It can be attributed
to the fact that a neural network captures not only
useful information contained in the given data, but
also unwanted noise. This usually leads to a poor
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level of generalisation. The performance of neural
networks in terms of generalisation for the out-of-
sample data – the data that are not used in training
the network – is always inferior to that of the
training data. Therefore, the development of neural
networks and the tasks related to architecture selec-
tion, learning parameter estimation and training,
require substantial care in order to achieve the
desired level of generalisation. The significance of
good generalisation is critical when using neural
networks for financial time series forecasting.

The issue of generalisation has long been a con-
cern to researchers, who have explored a variety of
procedures for enhancing the generalisation ability
of neural networks. A typical approach uses cross-
validation, where the data given is divided into three
sub-samples. The first is for training, the second for
testing, while the third is for validating. This
approach involves a substantial amount of compu-
tation that is often referred to as a weakness in
theory. Nonparametric probability density estimation
is another statistical tool used to improve generalis-
ation [7], but its underlying assumption – that the
distribution for both patterns and noise remains the
same over the model estimation and forecasting
period – could often not be satisfied in financial
time series. Other techniques of enhancing the gen-
eralisation ability of neural networks include mod-
ifying training algorithms [8], pruning the connec-
tions or hidden nodes of the network [9], using
adaptive learning parameters, and selecting signifi-
cant variables [10,11].

Recently, SVMs developed by Vapnik [12] have
provided another novel approach to improve the
generalisation property of neural networks. Orig-
inally, SVMs were developed for pattern recognition
problems. Recently, with the introduction ofe-insen-
sitive loss function, SVMs have been extended to
solve non-linear regression problems. Unlike most
of the traditional learning machines that adopt the
Empirical Risk Minimisation Principle, SVMs
implement theStructural Risk Minimisation Prin-
ciple, which seeks to minimise an upper bound of
the generalisation error rather than minimise the
training error. This will result in better generalisation
than conventional techniques.

The objectives of this paper are, first, to examine
the feasibility of applying SVMs in financial fore-
casting, and secondly, to investigate the functional
characteristics of the SVMs in financial forecasting.
The functional characteristics are obtained through
the selection of the free parameters of the SVMs.
Since there is no structured way to choose the free
parameters of SVMs, the variability in performance

with respect to the free parameters of SVMs is
examined, and the results are discussed.

Section 2 provides a brief introduction to SVMs,
and Section 3 contains the experimental data. The
techniques for data preprocessing and statistical per-
formance metrics are presented in the same section.
Section 4 describes the experimental results, and the
comparison with BP. The last section concludes
the work.

2. Theory of SVMs in Regression

Regression approximation addresses the problem of
estimating a function based on a given set of data
G 5 {( xi, di)} l

i (xi is the input vector,di is the
desired value), which is produced from the unknown
function. SVMs approximate the function in the
following form:

y 5 Ol

i51

wifi(x) 1 b (1)

where {fi(x)} l
i51 are the features of inputs and

{ wi} l
i51, b are coefficients. They are estimated by

minimising the regularised risk function (2):

R(C) 5 C
1
N ON

i51

Le(di, yi) 1
1
2

iwi2 (2)

Le(d, y) 5 Hud 2 yu 2 e ud 2 yu $ e

0 otherwise
(3)

where e is a prescribed parameter.
The first termLe(d, y) is the so-callede-insensitive

loss function. This self-explanatory function indi-
cates the fact that it does not penalise errors below

e. The second term,
1
2

iwi2, is used as a measure of

function flatness. C is a regularised constant
determining the trade-off between the training error
and model flatness. Introduction of the slack vari-
ables z, z* leads Eq. (2) to the following con-
strained function:

Minimise:

R(w, z(*)) 5
1
2

iwi2 1 C* On
i51

(zi 1 zp
i )

Subjected to: (4)

wf(xi) 1 b 2 di # e 1 zi

di 2 wf(xi) 2 bi # e 1 zp
i

z(p) $ 0
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Thus, Eq. (1) becomes the following explicit form:

f(x, ai, a9
i) 5 Ol

i51

(ai 2 a9
i) K (x, xi) 1 b (5)

Lagrange Multipliers. In function (5), ai, a9
i are

the Lagrange multipliers introduced. They satisfy
the equalityai * a9

i 5 0, ai $ 0, a9
i $ 0, i 5 1, . . .,

l, and are obtained by maximising the dual form of
function (4), which has the following form:

f(ai, a9
i) 5 Ol

i51

di(ai 2 a9
i) 2 e Ol

i51

(ai 1 a9
i) 2

1
2 O

l

i51

Ol

j51

(ai 2 a9
i) (6)

(aj 2 a9
j) K(xi, xj)

with the following constraints:

Ol

i51

(ai 2 a9
i) 5 0

0 # ai # C, i 5 1, 2,%, l

0 # a9
j # C, i 5 1, 2,%, l

Based on the nature of quadratic programming, only
a number of coefficientsai, a9

i will be assumed as
nonzero, and the data points associated with them
could be referred to as support vectors.

Kernel Function. K(xi, xj) is named as the kernel
function. The value is equal to the inner product of
two vectorsXi and Xj in the feature spacef(xi) and
f(xj). That is,K(xi, xj) 5 f(xi) * f(xj). Any function
that satisfies Mercer’s condition [12] can be used
as the kernel function. There are many choices
of the kernel function: common examples are the
polynomial kernel K(x,y) 5 (xy 1 1)d and the
Gaussian kernelK(x,y) 5 exp(2d2 (x 2 y)2).

Finally, it should be pointed out that training
SVMs is equivalent to optimising the Lagrange mul-
tipliers ai, a′i with constraints based on function
(6) [13,14].

3. Experimental Settings

3.1. Data Set

The S&P 500 Daily Index in the Chicago Mercantile
is selected for the experiment. The training data
points cover the time period from 01/04/1993 up to
the end of December 1994, while the data points
starting from 01/03/1995 up to the end of December
1995 are used as the test data.

The original data is transformed into a five-day
Relative Difference in Percentage (RDP) of the S&
P 500 index. As interpreted by Thomason [15,16],
there are four advantages in applying this transform-
ation. The most prominent is that the distribution of
transformed data will become more symmetrical and
closer to normal, as illustrated in Fig. 1. This modi-
fication in the data distribution trend will improve
the predictive power of the neural network.

Two groups of variables are chosen as the inputs
to the neural network. The first group (G-1) is
constructed from four lagged RDP values based on
5-day periods, and the transformed closing price
that is obtained by subtracting a 15-day exponential
moving average. The subtraction is performed to
eliminate the trend in price. The second group (G-
2) is constructed by adding another three technical
indicators: the Moving Average Convergence Diver-
gence (MACD), On Balance Volume (OBV) and
volatility. The MACD is defined as the difference
between two exponential moving averages, and it is
commonly used to predict market trends in financial
markets. The volatility denotes the range of the
highest and lowest prices in one day, and it is often
used as a measure of the market risk. OBV moves
in the same direction as price, i.e. as price increases,
the OBV will gain in magnitude. As OBV can relate
the volume into price, it is also used here as input.
The purpose of using these two groups of variables
is to observe whether multivariate analysis can
improve prediction accuracy while outsourcing with
more information. The calculation for all indicators
is listed in Table 1. There is a total of 500 data
patterns in the training set, and 200 data patterns in
the test set.

The long left tail in Fig. 1(b) indicates that there
are outliers in the data set. Since outliers may make
it difficult or time-consuming to arrive at an effec-
tive solution for a neural network, RDP values
beyond the limits of6 2 standard deviations are
selected as outliers. They are replaced with the
closest marginal values. Finally, all the data points
are scaled into the range of [20.9, 0.9] as the data
points include both positive and negative values.
Similar preprocessing procedures are applied to the
dependent variable RDP15. The only difference is
that RDP15 is obtained by smoothening the closing
price with a 3-day exponential moving average.

3.2. Performance Criteria

The prediction performance is evaluated using the
following statistical metrics: Normalised Mean
Squared Error (NMSE), Mean Absolute Error
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Fig. 1. (a) Histogram of S&P 500 daily closing price; (b) Histogram of RDP15. RDP15 values have a more symmetrical and
normal distribution.

Table 1. Independent and dependent variables.

Indictor Calculation

SP-EMAI5 P(i) 2 EMA15(i)
RDP-5 (p(i) 2 p(i 2 5))/p(i 2 5) * 100
RDP-10 (p(i) 2 p(i 2 10))/p(i 2 10) * 100
RDP-15 (p(i) 2 p(i 2 15))/p(i 2 15) * 100
RDP-20 (p(i) 2 p(i 2 20))/p(i 2 20) * 100

MACD EMA10(i) 2 EMA20(i)
OBV Hp(i) $ p(i 2 1) obv1 5 volume(i)

p(i) # p(i 2 1) obv2 5 volume(i)Volatility

k * sqrt S1/n * On
i51

log2(h(i)/l(i))D (k 5 80)

RPD15 (p(i 1 5) 2 p(i))/p(i) * 100
p(i) 5 EMA3(i)

EMAn (i) is the n-day exponential moving average of theith
day; p(i), h(i), l(i) are the closing, highest and lowest price of
the ith day.

(MAE), Directional Symmetry (DS), Correct Up
trend (CP) and Correct Down trend (CD). The defi-
nitions of these criteria are illustrated in Table 2.
NMSE and MAE are measures of the deviation
between actual and predicted values. The smaller
the values of NMSE and MAE, the closer are the
predicted time series values to that of the actual
value. DS provides the correctness of the predicted
direction of RDP15 in terms of percentage. CP and
CD provide the correctness of the predicted up
trend and predicted down trend of RDP15 in terms
of percentage.

4. Experimental Results

4.1. Results of SVMs and BP

In this investigation, the Gaussian function is used
as the kernel function of the SVMs. Our experiments
show that a width value of the Gaussian function
of 0.015 is found to produce the best possible
results.C and e are arbitrarily chosen to be 10 and
1023, respectively. The Sequential Minimal Optimis-
ation algorithm for solving regression problem
extended by Scholkopf [17–19] is implemented in
this experiment. The program is constructed using
the VC1 language.

A standard three-layer multi-layer perceptron
trained using the back propagation (BP) algorithm
is used as a benchmark [15,16]. There are five input
nodes for G-1 and eight input nodes for G-2, which
are equal to the number of indicators. The output
node is equal to 1, whereas the number of hidden
nodes is determined by using the formula W,5M/5,
where W is the number of interconnection weights
that satisfies the following equality:

W5(I1O)*H

where M 5 the number of training examples, I5
the number of input nodes, O5 the number of
output nodes, and H5 the number of hidden nodes.

The size of the network is controlled by ensuring
that the ratio of the number of weights to the
number of training samples is equal to or smaller
than 0.2. So, there are approximately 15 hidden
nodes in the network for both data sets. Selection
of the learning rate as 0.005 and the momentum
term as 0.9 can be attributed to the fact that the
BP, with these settings of the learning parameters,
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Table 2. Performance metrics and their calculations.

Metrics Calculation

NMSE
NMSE5 1/(d2n) * On

i51

(ai 2 pi)2

d2 5 1/(n 2 1) * On
i51

(ai 2 ā)2

MAE
MAE 5 1/n * On

i51

uai 2 piu

DS
DS5 100/n * On

i51

di

di 5 H1 (ai 2 ai21) (pi 2 pi21) $ 0

0 otherwise
CP

CP 5
100
n On

i51

di

di 5 H1 (pi 2 pi21) . 0, (ai 2 ai21) (pi 2 pi21) $ 0

0 otherwise

CD
CD 5

100
n On

i51

di

di 5 H1 (pi 2 pi21) , 0, (ai 2 ai21) (pi 2 pi21) $ 0

0 otherwise

can converge at the fastest speed without oscillation,
which will occur because of the use of a large
learning rate [20].

The behaviour of the NMSE (Normalised Mean
Squared Error) is illustrated in Fig. 2. It is evident
that the NMSE on the training set is monotonically
decreasing during the entire training period in both
BP and SVM networks. On the contrary, the NMSE
on the test set in BP is decreasing in the first few
thousands of epochs, like that of training set, but it
increases in the remaining epochs. This shows that
over-fitting has occurred in BP. In SVMs, however,
the NMSE on the test set fluctuates during the initial
training period, but at a later stage it gradually
converges to a constant value. All the above results
are found to be consistent with the statistical learn-
ing theory.

The comparison of BP is based on the results of
BP-1 and BP-2. BP-1 corresponds to the network
with epochs equal to 800, based on the assumption
that there is no over-fitting problem in BP, and the
generalisation error will increase if the training of
the network is continued. BP-2 corresponds to the

network in which the number of epochs is arbitrarily
chosen as 8000. All the results included in Tables
3 and 4 correspond to the best records obtained in
this experiment.

Table 3 gives the results for G-1, and the results
of G-2 are listed in Table 4. For G-1, the NMSE
and MAE (Mean Absolute Error) of SVMs are
0.001, 0.0005 on the training set, and 1.4383, 0.3403
on the test set. It is evident that these values are
much smaller than those of BP-1 and BP-2, indicat-
ing that there is a smaller deviation between the
actual and predicted values in SVMs. Moreover, the
DS (Directional Symmetry), CP (Correct Up trend)
and CD (Correct Down trend) of SVMs are as high
as 95.59, 100 and 91.63 on the training set.
Although they are slightly lower than those of BP-
1 and BP-2 on the test set, the DS, CP and CD of
SVMs are still higher than those of the other two
techniques when applied to G-2. These three criteria
provide a good measure of the consistency in predic-
tion of the price direction. Thus, it can be concluded
that SVMs forecast far better than BP, even though
BP does not suffer from the over-fitting problem in



189Financial Forecasting Using Support Vector Machines

Fig. 2. (a&b) The behaviour of NMSE in BP. The NMSE on the training set (a) keeps on decreasing in the entire period, while the
NMSE on the test set (b) is decreasing in the first 1000 epochs, but it changes to increase in the remaining epochs. This suggests
that over fitting has occurred in BP; (c&d) the behaviour of NMSE in SVMs. As in BP, the NMSE on the training set (c) keeps on
decreasing during the entire period, while the NMSE on the test set (d) fluctuates during the initial period, and gradually converges
to a constant value.

Table 3. Results of BP and SVMs for G-1.

G-1 set Training data Test data

BP-1 BP-2 SVM BP-1 BP-2 SVM

NMSE 0.9144 0.8273 0.0001 1.4446 1.6937 1.4383
MAE 0.3218 0.3097 0.0005 0.3496 0.3726 0.3403
DS 51.70 53.10 95.59 49.24 49.75 47.72
CP 52.96 55.51 100.0 51.08 50.00 46.21
CD 50.57 50.95 91.63 47.66 49.53 48.60

the case of BP-1. The same conclusion can also be
achieved by analysing Table 4. Furthermore, by
comparing the results of the two tables, it can be
seen that the multivariate analysis does not improve
the predictive power of the networks. On the con-
trary, it worsens the prediction in all techniques in
terms of the specified criteria on the test data.

The actual RDP15 values and predicted values
from both networks are illustrated in Fig. 3, where

Table 4. Results of BP and SVMs for G-2.

G-2 set Training data Test data

BP-1 BP-2 SVM BP-1 BP-2 SVM

NMSE 0.8577 0.4195 0.0004 2.1592 4.4260 1.6762
MAE 0.3124 0.2157 0.0011 0.4353 0.6347 0.3706
DS 55.51 59.12 95.19 41.23 39.20 46.23
CP 55.08 61.86 99.15 41.30 40.21 47.82
CD 55.89 56.65 91.63 40.47 38.31 44.86

only G-1 is considered, since G-1 has better per-
formance than G-2. It is obvious that the predicted
values obtained from SVMs are closer to the actual
values than those of BP.

4.2. Sensitivity of SVMs to Parameters

Since there is an absence of a structured method to
select the free parameters of SVMs, the generalis-
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Fig. 3. (a) The predicted values of SVMs on the training data;
(b) predicted values of BP-1 on the training data; (c) predicted
values of SVMs on the test data; (d) predicted values of BP-1
on the test data. All the results indicate that the predicted values
of SVMs are closer to the actual values than BP-1.

ation error and number of support vectors with
respect toC and e are studied. The data set used
is G-1.

Figure 4(a) illustrates the generalisation error ver-
sus C. From Fig. 4, the generalisation error is
not influenced greatly byC. The values of the
generalisation errors range only between [1.25, 1.60]
when C is increased from 0.0001 to 1000. Figure
4(b) shows that the number of support vectors
increases rapidly whenC rises from 0.1 to 1, and
then it remains almost stable afterC reaches 1.

Figure 5(a) illustrates the generalisation error ver-
sus e; e is also found to have little impact on the
generalisation error, but the number of support vec-
tors reduces to 0 with the increment ofe.

5. Conclusions

The use of SVMs in financial forecasting is studied
in this paper. The study has concluded that SVMs
provide a promising alternative to time series fore-
casting. They offer the following advantages:

1. There is a smaller number of free parameters
compared to BP.C and e are the only two free
parameters of SVMs if the kernel function has

Fig. 4. (a) The generalisation error versusc. The generalisation
error is not much influenced byc; (b) the number of support
vectors versusc. The number of support vectors increases rapidly
when c rises from 0.1 to 1, and then it remains almost stable
after c reaches 1.
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Fig. 5. (a) The generalisation error withe. The generalisation
error is not much influenced bye; (b) the number of support
vectors with e. The number of support decreases to zero with
the increment ofe.

been considered. As illustrated in the experiment,
they also have little impact on the solution. How-
ever, for BP the size of the network, learning
parameters and training all greatly affect the pre-
diction performance.

2. SVMs forecast better than BP. As shown in our
results, SVMs provide a smaller NMSE and MAE
and a larger DS, CP and CD than those of BP.
This is because SVMs adopt the Structural Risk
Minimisation Principle, eventually leading to bet-
ter generalisation than conventional techniques.

3. Training SVMs is faster than BP. The regression
function in SVMs is only determined by the
support vectors, and the number of support vec-
tors is much smaller compared to the number of
training samples. In BP, it often converges
slowly, and may even converge to local minima
because of its local gradient descent learning
algorithm.

The study also indicates that the multivariate
analysis with the addition of MACD, OBV and
volatility indicators does not improve the predictive
power of the neural networks.

Although there is little impact on the generalis-
ation error with respect to the free parameters of

SVMs, we believe that there is still much room for
improvement in SVMs with respect to forecasting
financial time series. Future work will focus on this
aspect, and the selection of input variables for the
multivariate analysis.
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