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Abstract.

This paper describes and evaluates the use of support 
vector regression to trade the three month Aluminium 
futures contract on the London Metal Exchange, over the 
period June 1987 to November 1999. The Support Vector 
Machine is a machine learning method for classification and 
regression and is fast replacing neural networks as the tool 
of choice for prediction and pattern recognition tasks, 
primarily due to their ability to generalise well on unseen 
data. The algorithm is founded on ideas derived from 
statistical learning theory and can be understood intuitively 
within a geometric framework. In this paper we use support 
vector regression to develop a number of trading sub-
models that when combined, result in a final model that 
exhibits above-average returns on out of sample data, thus 
providing some evidence that the aluminium futures price is 
less than efficient. Whether these inefficiencies will continue 
into the future is unknown.

 
Motivation
 
Is it possible to design quantitative trading models that result in above-
average, risk-adjusted returns? The Efficient Markets Hypothesis (EMH) 
rules this out as a possibility. This is not surprising; the arguments 
supporting the EMH are extremely persuasive (Fama, 1965), none more 
so than the contention that any predictable component will be traded out 
of the markets by “rational” arbitragers, rendering them efficient once 
again. 
 
Few would disagree with the idea that a visible discrepancy in price, for 
the same commodity in two markets, would quickly disappear due to the 
effects of arbitrage. The reality, however, is that profit opportunities, 
when they exist, are not as obvious as the arbitrage argument might 
suggest. They tend to be statistical in nature and, though they may 
represent a favourable bet, they are not riskless, possibly requiring 
infinite capital to remove completely (Zhang, 1999). Moreover, the 
effectiveness of “zero risk” (as opposed to statistical) arbitrage relies on 
the availability of a perfect (or close) substitute.  This is not always the 
case.
 
If we accept that obvious, predictable components will be traded out of 
the markets with relative ease then we must conclude that any remaining 
inefficiencies, if they exist, are complex in nature to a degree that they 
are not easily exploited with methods used by the majority of market 

participants[1]. With this mind, we employ a relatively new machine 
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learning method, support vector regression, in an attempt to extract 
possible regularities in the market price of aluminium - a market that is 
arguably less scrutinized than others such as the stock markets.
 
Aluminium on the LME. 
 
The London Metal Exchange (LME) was established in 1877 and is the 
world’s largest non-ferrous metals derivatives market with a turnover 
value of approximately US$2000 billion per annum. It is a 24-hour 
market trading through a combination of continuous inter-office dealing 
and open-outcry sessions at certain fixed time slots during the day. Of 
this, hedging represents 75-85% of turnover (Martinot et al., 2000). 
Aluminium began trading on the LME in 1978 though it was only in the 
mid-eighties that the contract became widely used when the LME price 
was adopted as the industry marker price (Figuerola-Ferretti & Gilbert, 
2000). At the time of writing the LME price forms the effective price basis 
for the international base metals market.

The LME three month Aluminium Futures contract (liquidity is mainly 
concentrated in the three month and cash contracts) is a forward contract 
between buyer and seller for delivery of 25 tonnes of the metal on a 
specified three month "prompt" date in the future at a specified price. The 
majority of positions are closed before prompt by trading offsetting 
contracts, replacing delivery obligations with monetary differences, 
officially quoted in USD – though sterling, euro, mark and yen can be 
used for clearing purposes. 

The method of trading on the LME differs to that on most standard 
futures exchanges partly due to the LME’s close links with the physical 
metals industry and its status as a wholesale market (Gilbert, 1996). 
While initial and variation margins are called during the term of the 
contract, profits and losses are not realised until the contract prompt date 
or until it is closed out – deemed an advantage to the physical users of 
the exchange. Moreover, when a trade is entered it is at the current three 
month price, however, when exiting the trade, an adjustment has to be 
made to take into account the possible contango or backwardation of the 
contract which depends on demand, supply and interest rate factors for 
contracts in different delivery periods. This means that the quoted 
historical three month price being modelled is not what would be 
experienced in real-time trading. Whilst it is important to bear this in 
mind, it is not a serious problem as the differences will tend to even out 
in the long term, with long (short) positions affected adversely 
(favourably) in conditions of backwardation and vice versa in conditions 
of contango.
 
Support Vector Regression.
 
The Support Vector Machine (SVM) is a powerful machine learning 
method for classification and regression (see Appendix A for details) 
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which is fast replacing neural networks as the tool of choice for prediction 
and pattern recognition tasks, primarily due to their ability to generalise 
well on unseen data. Although the SVM as a learning method has only 
recently gained in popularity, the underlying principles of the algorithm 
date back to work done by Vapnik in the early 60’s (Vapnik & 
Chervonenkis, 1964; Vapnik & Lerner, 1963) and are based on ideas 
derived from statistical learning theory. This recent increase in popularity 
is due to advances in methods and theory which include the extension to 
regression from the original classification formulation. For a thorough 
treatment see (Vapnik, 1998; Vapnik, 1995), the tutorials(Burgess, 1998; 
Smola & Scholkopf, 1998) and the introduction (Cristianini & Shawe-
Taylor, 2000).
 
SVM Regression involves a non-linear mapping of an n-dimensional input 
space into a high dimensional feature space. A linear regression is then 
performed in this feature space. SVMs use the structural risk minimisation 
(SRM) induction principle which differentiates the method from many 
other conventional learning algorithms based on empirical risk 
minimisation (ERM) alone, for example standard neural networks. This is 
equivalent to minimizing an upper bound in probability on the test set 
error as opposed to minimising the training set error, which should result 
in better generalisation. Importantly for practitioners, recently published 
research has shown successful application of the SVM methodology in a 
wide variety of fields (Barabino et al., 1999; Joachims, 1997; Mukherjee 
et al.,1999; Trafalis & Ince, 2000).
 
The method has a number of advantages over other techniques; the 
parameters that need to be fitted are relatively low in number and, unlike 
other methods such as neural networks, they do not suffer from local 
minima. The two main features of SVMs are their theoretical motivation 
from statistical learning theory and the use of kernel substitution to 
transform a linear method into a general non-linear method, with little 
added complexity.
 
Model Design and Methodology.
 
There are different approaches when it comes to deciding how much data 
to use when designing trading models. One view is that the market is 
always changing and therefore one does not want to use data too far 
back in history, as there is a danger that much of it will be redundant. 
The other approach is to use as much data as is available, reasoning that 
the only way to have confidence in the model’s final results is if it has 
acceptable performance over as long a data history as possible. We 
subscribe to the latter approach and use the entire available data set.
 
To tackle the problem we invoke the principle of divide and conquer in 
that we start by attempting to build a number of trading sub-models, 
each using a different set of input features. These sub-models are then 
combined with the intention of creating a final model that is more 
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effective than any one model used in isolation - constituting a type of 
committee machine. Transaction costs are not used as a constraint on 
model selection when building the sub-models; the rationale being that in 
some cases strong short term regularities contained within price, but not 
tradable in isolation due to transaction costs, might be exploitable if 
derived models are combined with other longer term sub-models and the 
use of majority voting methods. At the final stage, a trading wrapper - 
which takes into account commission, slippage and order type - is added 
to simulate real trading.
 
The data used in this study consist of the "LME provisional closing price" – 
the daily 5pm close of the second kerb session of the three month LME 
Aluminium futures contract, covering the period from 11 June 1987 to 4 

Nov 1999[2][3]. Data from 5 Nov 1999 to the present date is excluded 
from this study as it is to be used in a final trading meta-model (that may 
or may not include the results from this paper) which will require further 
out of sample testing. This will help to alleviate the problem of “cherry 
picking” the best models.
 
The data are divided into training, validation and out of sample sets. The 
training period covers 2136 days from 11 June 1987 to 17 Aug 1995, the 
validation set 400 days from 18 Aug 1995 to 27 Feb 1997 and the out of 
sample from 28 Feb 1997 to 4 Nov 1999, 700 days (see Table 1).

 
Table 1

Set Dates Length
Training set 11 June 1987  to 17 Aug 1995 2136 days
Validation set 18 Aug 1995 to 27 Feb 1997 400 days
Final out of 
sample set

28 Feb 1997 to 4 Nov 1999 700 days

 
  
Inputs.
 
Finding a good representation of the data to use as inputs and outputs 
is very important, especially when building trading models. The 
objective is to find a representation that will render the signal (if one 
exists) more explicit and/or attenuate the noise component. The 
number of possible transformations of price to arrive at potential input 
candidates is infinite, so for the sake of simplicity we considered inputs 
of the form:
 

,                                                  
          (1)
 
in addition to associated lags up to a maximum of 10 and, finally, a 
proprietary input based on price seasonality derived from initial 
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exploratory data analysis. Training examples with values beyond the 

range were clipped and all values were then scaled to zero mean, 
unit variance. The number of inputs per model was kept to a maximum 
of six in order to limit complexity. Standard log returns were chosen as 
the target or dependent variable:
 

                                                                           
(2)
 
The objective was to choose input candidates that exhibited correlation 
to future changes in price i.e., the target. To do so, a number of 
techniques to measure correlation were used including non-parametric 
correlation, mutual information and a technique using ANOVA also used 
in (Harland, 2000a; Harland, 2000b ) which is similar to that originally 
proposed by (Burgess & Refenes, 1995). The main criteria was that any 
correlation exhibited by a potential input candidate had to be as 
constant as possible over the full length of the training set.
 
The above procedure resulted in multiple candidate SVR input sets 
which we restricted in number to ten. SVR was then used to build a 
model for each input set.  The choice of kernel determines the type of 
the resulting learning machine. Common kernel functions include 
polynomial, radial basis functions (RBF) and sigmoid kernels. In this 
experiment we used RBF kernels which have the form:

                                                                            
(3)

where  is the width of the kernel. The SVM regression method has a 
number of ‘tunable’ parameters that need to be determined by the 
user: C a regularisation parameter, , and in this case the width of the 

RBF kernel . Table 2 shows the values that were tested.
 

Table 2
Parameters Values
C 10, 100, 1000, 

10000,100000
0.1, 0.01, 0.001, 0.0001
0.001, 0.01, 0.25, 0.5, 0.75

 
To simulate trading the following rule was used on the continuous 
output of the SVM: 
 
IF SVM_OUTPUT>0 THEN LONG ELSE SHORT.
 
A measure of each model’s performance was calculated over the 
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validation set by dividing total daily log returns by the daily standard 
deviation (similar in nature to the Sharpe ratio). Those parameters that 
resulted in the highest value for this statistic were chosen for the final 
sub-model, with the proviso that the gradient of the in-sample training 
performance was reasonably similar to that exhibited over validation 
data.  The above model design procedure resulted in ten sub-models. 
These were combined together using majority voting to arrive at the 
actual daily trading signal - see further details below. For the sake of 
brevity we provide the results for two of these sub-models in addition to 
the final model.
 
  
Sub-Model 1.
 
Figure 1 depicts the performance over the whole dataset and is based 
on trading one contract. The three month aluminium price is re-based 
to zero at the start of the period and multiplied by 25 (contract is for 25 
tonnes) and represents the equity stream experienced by buying and 
holding one contract. The Cumulative Equity Curve (CEC) represents 
the profit gained/lost by following the output of the SVM following the 
rule; If output>0 then long else short. Figure 2 shows the performance 
over the out of sample data. 

                                                           
Figure 1 Figure 2

 
  

Table 3
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A number of trade statistics for this sub-model can be seen in table 3. 
The results are also included for the second half of the in-sample 
training set to give a clearer picture of overall performance. 
 
As mentioned above, no transaction costs have been included so the 
numbers at this stage should be seen as general statistics rather than 
real trading results. As expected, the training and validation results are 
good. Most important are out of sample results, which, in this case, 
exhibit a generally upward sloping CEC along with a similar winning 
percentage as the rest of the data. The CEC is relatively smooth over 
the whole data set from in-sample to out of sample, although the 
average trade figure decreases somewhat in the out of sample data to 
$101, from $118 in the validation set. If we assume transaction costs of 
$100 per round turn the model is not tradable in its current state, 
however, the results suggest that it is managing to detect some form of 
predictable structure in the price of aluminium and is therefore used in 
the final model.
 
Sub-Model 2.
 
This model uses inputs that were designed to result in longer average 
trade duration and higher average trade returns than the previous 
model. Results can be seen in Figures 3, 4 and table 4.

  
Figure 3 Figure 4 
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Table 4

 
Final Model.

 
The final model is the result of combining the ten sub-models, using a 
special rule to trade the result. The rule is explained below, the 
parameters of which were arrived at via optimising the Sharpe ratio 
over the in-sample training and validation sets subject to the constraint 
that the average trade was greater than $250 excluding transaction 
costs.

 
Majority Trading Rule:
 
1)     Each SVM sub-model output is assigned 1 if >= 0.0 and -1 if < 
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0.0.
2)     A long (short) trade is only taken if this majority is above (below) 
a certain 
(-)threshold. In this case the threshold was 4.
3)     The result for each model on each day is then summed, producing 
a number representing the majority decision which can range from -
10 to 10.
4)     Each trade is then held until the majority decision signals a trade 
in the opposite direction. This results in what is commonly called a 
stop & reverse system and is always in the market.
 

 
 

Figure 5 Figure 6 

 
 

The results can be seen in Figures 5, 6, and in table 5. Slippage & 
transaction costs of $100 per trade, that is per round turn, are included.
 
Table 5
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The results are encouraging; the Sharpe Ratio for the training and 
validation sets is just over 1.6, rising in the out of sample period to 2.0 
(the Figure of 1.41 for the second half on the training data was due to a 
higher than average standard deviation of returns). It has an average 
trade of $258 and a maximum drawdown (MD) of $4725 on the out of 
sample data. A more sobering $14,900 MD occurs at the beginning of 
the training period from 19 Oct 1987 to 17 Dec 1987 - during the stock 
market crash of the same year. The average trade in the validation set 
is $175, lower than both the training and out of sample sets. At the 
start of the training data in Figure 5 the CEC exhibits a sharp rise and 
then has a relatively constant gradient from the early-nineties to the 
end of the data. One possible explanation is that the market was less 
efficient at the start of the period, though this is by no means certain. 
There is a flat period from 8 Mar 1995 to 18 Jun 1996, which would be 
difficult to trade through, however, the fact that it occurred in the 
training period suggests the model is not overfitting to any great 
extent. 
 
No trade exit strategy has been incorporated such as stop loss exits, 
profit limits etc., as their addition did not result in any discernable 
improvement. We find this to be generally the case with trading models 
of this type - probably due to the model signal itself indicating the ideal 
time to exit a trade. Having said that the final trading system would 
have emergency stops placed at a distance where they would only be 
hit in extreme price moves - whether they would be filled at that level is 
another matter.

 
Conclusion.
 
An effective methodology has been developed for the application of 
support vector regression to trade three-month Aluminium futures on 
the LME. Ten sub-models were designed and then combined using a 
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majority voting trading rule to obtain a final model that, as a first 
attempt, exhibits profitable performance over out of sample data. This 
suggests that the three month aluminium price contains inefficiencies 
that can be exploited using machine learning. Combining the Final 
Model with other models built by the author using different methods 
should result in a usable trading system for aluminium futures. Of 
course, there is no guarantee that the relationships detected over the 
time period analysed will continue into the future - it may be that these 
inefficiencies have been traded out of the market.
 
References.
 
Barabino, N., Pallavicini, M., Petrolini, A.k, Pontil, M., & Verri, A. (1999). 
“Support Vector Machines vs Multi-layer Perceptrons in Particle Identification.”
European Symposium on Artificial Neural Networks, 1999, Bruges, Belgium
 
Burges, C.J.C. (1998).  “A Tutorial on Support Vector Machines for Pattern 
Recognition.”  Data Mining and Knowledge Discovery, 2(2):1-47.
 
Burgess, A.N. & Refenes, A.N. (1995). “Modelling Non-linear Cointegration in 
International Equity Index Futures.” Neural Networks in Financial Engineering 
(Proceedings of the Third International conference on neural networks in the 
Capital Markets 1995). World Scientific.
 
Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector 
Machines: And Other Kernel-Based Learning Methods, Cambridge University 
Press.
 
Fama, E. F. (1965). "The Behavior of Stock Market Prices." Journal of Business 
38:34-105.
 
Figuerola-Ferretti I. & Gilbert C.L. (2000). “Has Futures Trading Affected the 
Volatility of Aluminium Transactions Prices?” AEA International Conference on 
Industrial Econometrics, Luxembourg City, July 5,6 and 7, 2000.
 
Gilbert C.L. (1996). “Manipulation of Metals Futures: Lessons from Sumitomo.” 
CEPR Working Paper.
 
Harland Z. (2000a). “Using Nonlinear Neurogenetic Models with Profit Related 
Objective Functions to Trade the US T-bond Future.” In Computational Finance 
1999 (Proceedings of the Sixth International Conference on Computational 
Finance). Leonard N. Stern School of Business, New York University, January 6-
8, 1999. Edited by Yaser S. Abu-Mostafa, Blake LeBaron, Andrew W. Lo, and 
Andreas S. Weigend, 327 - 342, MIT Press, Cambridge, MA.
 
Harland Z. (2000b). “Trading a 2 Year Old – the Real-Time Performance of a 
Neurogenetic T-bond Futures Trading System.” The Market Technician, Journal 
of the Society of Technical Analysts. 38, 14-15
 
Joachims, T. (1997). “Text Categorization with Support Vector Machines.” 
Technical Report, LS VIII Number 23, University of Dortmund.
 
Martinot, N., Lesourd J., Morard B. (2000). “On the Information Content of 

http://www.zachar.dial.pipex.com/SVMnew/SVMAluminium.shtml (11 of 15) [4/9/2002 5:06:34 PM]

http://www.support-vector-machine.org/Burg98.ps
http://www.support-vector-machine.org/Burg98.ps


Aluminium on the LME

Futures Prices - Application to LME Nonferrous Metals Futures.” AEA 
International Conference on Industrial Econometrics, Luxembourg City, July 5,6 
and 7, 2000.
 
Mukherjee, S., Tamayo, P., Slonim, D., Verri, A., Golub, T., Mesirov, J.P. & 
Poggio, T. (1999). “Support Vector Machine Classification of Microarray Data.” 
AI Memo 1677, Massachusetts Institute of Technology.
 
Smola, A. & Scholkopf, B. (1998). “A Tutorial on Support Vector Regression.” 
NeuroCOLT2 Technical Report Series, NC2-TR-1998-030.
 
Trafalis, T.B. & Ince, H. (2000). “Support Vector Machine for Regression and 
Applications to Financial Forecasting." Proceedings of the IEEE-INNS-ENNS 
International Joint Conference on Neural Networks (IJCNN'00).
 
Vapnik, V.N. & A.Y. Chervonenkis (1971). “On the Uniform Convergence of 
Relative Frequencies of Events to their Probabilities.” Theory of Probability and 
its Applications 16(2), pp. 264—281.
 
Vapnik, V. (1998).  Statistical Learning Theory. John Wiley & Sons.
 
Vapnik, V. (1995).  The Nature of Statistical Learning theory. Spring-Verlag, 
New York.
 
Vapnik, V. & Chervonenkis, A. (1964). “A Note on One Class of Perceptrons.” 
Automation and Remote Control, 25.
 
Vapnik, V. & Lerner, A. (1963). “Pattern Recognition Using Generalized Portrait 
Method.” Automation and Remote Control, 24.
 
Zhang, Y. (1999). “Toward a Theory of Marginally Efficient Markets.” Physica A, 
269, 30-44.

 
Appendix.
 
The overall problem of supervised learning involves the selection of a 
function, or hypothesis, from a given hypothesis space that 
approximates a desired response contained within a set of labelled 
training examples. In the case of  regression the labels take on real 
values.
 

Given a set of training data  where  and 

the labels , our objective is to find a function, or hypothesis, 
which minimizes the risk functional:
 

                                                             
          (4)
 

Where L is a loss function,  is the combined probability density of 
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x and y, and  is the set of hypotheses from which the learning 
machine can choose. R(w) is a measure of how accurate an hypothesis 
is at predicting the correct label y given an input x. In general we do 

not know the true distribution  and therefore need to estimate 
the risk from the data using the empirical risk functional:
                               

      
                                                                    (5)
 
Where l is the number of training patterns. The function is called 

consistent if, asymptotically  (as ), the empirical risk converges to 
the actual risk.
 
Replacing the risk functional with the empirical risk functional is known 
as the Empirical Risk Minimization principle (ERM). It can been shown 
that minimizing the empirical risk does not necessarily result in a good 
hypothesis that is, minimizing equation (5) does not necessarily equate 
to minimizing equation (4). To use a trivial example, a function which 

has the values  over the training set, but the values 

 on unseen data exhibits , but obviously does not 
generalize. The problem is that there exists an infinite number of 
hypotheses that are consistent with the training data but disagree on 
unseen data.
 
If the hypothesis space consists of a set of highly expressive functions it 
is said to have high a capacity. An hypothesis chosen from such a high 
capacity hypothesis space may easily fit the training set without error 
but may not generalize well. This is known as over-fitting where the 
learned hypothesis has fitted both the signal and the noise component 
of the (finite) training set. 
 
Intuitively a “simple” hypothesis that exhibits a “good” fit is preferable 
to a more complex one and will generalize better on unseen data. To 
achieve good generalization a trade off is required between the degree 
to which the hypothesis fits the training set and the capacity of the 
learned hypothesis. This trade off is formalized by the Structural Risk 
Minimization (SRM) principal (Vapnik, 1998) which combines the 
minimization of the risk functional with a restriction on the capacity of 
the hypothesis space. Capacity is measured by the so-called Vapnik 
Chervonenkis (VC) Dimension (Vapnik, 1971) which is central to the 
underlying theory of SVMs. SRM involves formulating in probability an 
upper bound on the test set error and then trying to minimize this 
upper bound. 
 
The main concepts of SVMs are perhaps best explained by examining 
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them within a geometric context. Let us take the simplest case, that of 
a classification task with linearly separable patterns i.e., there exists a 

pair  such that 

                                                             
          (6)
 
The hypothesis space is then the set of functions

                                                                       
          (7)
where the weight vector  determines the orientation of the decision 

surface in the form of a hyperplane and the scalar is the offset. The 
distance between the two closest  points on either side of a separating 
hyperplane is known as the margin of separation, shown by 

,Figure 7.
     Figure 7

 As the data are linearly separable the classes can be separated by an 
infinite number of hyperplanes but only one of these will have the 
maximal margin of separation. In this case the objective of the SVM 
algorithm is to find this optimal hyperplane (Vapnik, 1995) which is 
more likely to generalise and is uniquely determined by the vectors on 
the margin, the so-called support vectors. (6) can be written in compact 
form 
 

 for all                                                     
          (8)
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w and b can be rescaled such that the points closest to the hyperplane 

satisfy , obtaining the canonical form (Vapnik, 1998) 
which helps to simplify the problem. The margin of separation 

 can be shown to be equivalent to . Hence the optimal 

hyperplane is attained by  or equivalently, minimising the 
convex quadratic programming problem,         
  

                                                                                     
 (9)

s.t.                                                            
          (10)
 
In order to solve this Lagrange multipliers are introduced. For a 
thorough treatment see (Vapnik, 1998).
 
If the data are non-separable a number of points will lie on the wrong 
side of the separating hyperplane in which case we need to relax 
constraints (10). This is attained by introducing “slack” variables:

resulting in:

,                                                            
          (11)
Equation (9) becomes:                                                                       

                                                                           (12)
 
To be completed in final paper.

 

[1] Fundamental and/or traditional technical analysis.
[2] In order to satisfy concerns regarding robustness we also tested the methodology using official am/pm “fixes” and 
gained similar results.
[3] Prior to 1988 the data is the "P.M. Unofficial" price. The start date is the earliest available from CSI data providers.
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