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Abstract. The disappointing performance of value and small cap strate-
gies shows that style consistency may not provide the long-term bene-
fits often assumed in the literature. In this study we examine whether
the short-term variation in the U.S. size and value premium is pre-
dictable. We document style-timing strategies based on technical and
(macro-)economic predictors using a recently developed artificial intel-
ligence tool called Support Vector Regressions (SVR). SVR are known
for their ability to tackle the standard problem of overfitting, especially
in multivariate settings. Our findings indicate that both premiums are
predictable under fair levels of transaction costs and various forecasting
horizons.

1 Introduction

There is no doubt about the importance of investment styles in modern portfolio
management. The underlying rationale for this relates to a series of influential
studies documenting the potential benefits of investing in stocks with funda-
mental commonalities or “styles”. In the past two decades, substantial evidence
surfaced suggesting that investing in portfolios of stocks with a small market
capitalization and value orientation provides a premium in the long run. The
“size premium” has been first reported by Banz [5], who found a negative re-
lation between a firm’s market capitalization and its stock performance in the
U.S. The extensively researched “value premium” has been documented most
prominently by Fama and French [19, 21] and Lakonishok et al. [27]. These stud-
ies showed that stocks with typical value features such as low market-to-book
(M/B), low price-to-earnings (P/E) and low price-to-cash (P/C) ratios provided
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higher average returns than so-called “growth” stocks, with high M/B, P/E and
P/C ratios. These empirical findings induced a discussion on the source and mag-
nitude of the value and size premium. Some studies argued that this premium
is a compensation for holding stocks under relative distress, see for instance [12,
20]. Another view, put forward in [27,23], is that stock markets lack efficient
pricing ability. A third possible explanation suggested in [30] is that the ob-
tained results are due to data snooping biases. A recent review and update for
the U.S. by Chan and Lakonishok [13] shows that value investing still generates
promising returns in the long run. Dimson et al. [18] make similar statements
for the U.K. value premium.

The rather disappointing performance of small cap and value strategies dur-
ing the nineties has however pointed out that style consistency may not neces-
sarily provide superior returns in any economic regime. A relatively small body
of literature has explicitly addressed the potential benefits of style timing strate-
gies over a style consistent approach. Although most of these papers may differ
in methodology, they all rely on the notion that the cyclical behavior of invest-
ment styles is correlated with systematic economical and technical forces, which
could make the value and size premium partially predictable. Cooper et al. [16]
find sufficient predictability for size-sorted strategies in the U.S., but weaker re-
sults for value-sorted strategies.! Levis and Liodakis [28] find moderate evidence
in favor of small/large rotation strategies, but less evidence for value/growth
rotation in the United Kingdom. Bauer et al. [6] find evidence for the profitabil-
ity of style rotation strategies in Japan, but point out that moderate levels of
transaction costs can already make these results less interesting in a practical
context. The majority of rotation studies employ technical (or market-based)
and (macro-)economic indicators. The dependent variables, either the value or
the size premium, are constructed using well-known style index series.

In this study we will use a similar approach by constructing the value and
size premium in the U.S. based on S&P style indices. The sign and magnitude of
both premiums will then subsequently be forecasted using a broad set of (macro-
)Jeconomic and technical predictors. In contrast to the studies mentioned above,
we will not apply a standard multifactor model framework. Factor models in gen-
eral suffer from deficiencies intrinsic to multiple regression techniques. Most of
the studies based on this methodology ex ante decide to construct parsimonious
models to avoid the problem of overfitting. Increasing the number of factors at
some point will deteriorate the out-of-sample prediction ability of the rotation
models. Levis and Liodakis [28] for instance report empirical results based on six
factors for the size spread and eight factors for the value spread. Although their
regression window is expanding, thereby updating the relevance of the factors
through time, it does not provide the ability to add or delete economically viable
factors. In most cases the “optimal” choice of independent variables is based on
a set of statistical criteria, like adjusted R2, the Akaike information criterion or
the Schwarz criterion. These criteria are designed to correct the inclusion of fac-

! Other related work includes [1-4, 17,24, 26, 31].



tors for the increased model complexity. Potentially, numerous relevant variables
are bound to be excluded as predictors.

A further complication arises from the fact that individual factors in a model
are usually assumed to be independent. Most linear regression models however
are likely to suffer from multi-collinearity, especially when forecasting variables
are numerous and closely related. One could therefore argue that factor models
face two pivotal challenges: first, how to employ a large set of potentially rele-
vant variables in a factor model without jeopardizing its predictive power, and
second, how to incorporate possible interactions between individual variables in
the course of the model-building process without deteriorating the quality of the
model.?

Support Vector Regressions (SVR) have become a popular analytical tool
following a series of successful applications in fields ranging from optical charac-
ter recognition to DNA analysis [35,41]. In essence, the SVR technique is used
for function estimation based on an observed finite number of input-output re-
lations, just like the linear multiple-regression technique. Numerous potential
applications of SVR in finance have been reported elsewhere.? The combination
of three key features can justify a priori the utilization of the SVR tool in finan-
cial forecasting modeling. First, SVR behave robustly even in high-dimensional
feature problems [32], or in other words, where the explanatory variables are
numerous, and in noisy, complex domains [10]. Second, SVR achieve remarkable
generalization ability by striking a balance between a certain level of model ac-
curacy on a given training data-set, and model complexity.* And third, SVR
always find a global solution to a given problem [40, 44], in sharp contrast with
neural networks for instance. A general limitation of SVR is that they produce
point estimates rather than posterior probability distributions of the obtained
results, which follows from the fact that SVR are a nonparametric tool. Some
parameters however have to be estimated in advance via a standard procedure
called “cross-validation”. This procedure, though quite computationally exten-
sive, additionally ensures that model selection is based on out-of-sample rather
than in-sample performance.

Using SVR we will construct models in order to predict the value and size
premium in the U.S. stock market.Our aim is to test on a preliminary level the
performance of SVR, and not to engage in an extensive data-mining exercise.
For that reason, we build our models on historical data of 60 months, which
is a quite common horizon in the literature. Obviously, other model-building
horizons can be explored, but in such a way artificially good results could emerge,
falling pray to the data-mining critique. We compare the results of the rotation
strategies with so-called style consistent passive strategies. Furthermore, we vary
the forecast horizon (one-, three- and six-month signals), which serves as a model-
stability test, and measure the impact of a wide range of transaction costs. The

2 See [9] and [37] for a discussion on these and related issues.

3 See, e.g. [34,36,38,41, 43].

4 Note that in real-world applications the presence of noise in regression estimation
necessitates the search for such a balance, see [44, 46].



empirical section shows that style rotation strategies using signals created by
SVR produce outstanding results for both the value and the size premium.

The remainder of the paper is organized as follows. Section 2 discusses the
choice of explanatory variables and the nature of the explained variables (the
proxies for the value and size premium). Section 3 deals extensively with Support
Vector Regressions as an analytical tool and how it can be used to predict the
value and size premiums. Section 4 presents our main empirical findings, and
finally section 5 concludes.

2 Data

2.1 Construction of the value and size premium series

The choice of an appropriate measure to determine the value premium is cru-
cial. Our main goal is to come up with a trading strategy, which can be easily
implemented in a practical context®. In principle, long time series data from the
Center for Research in Security Prices (CRSP) can be used. Following this venue
is not well suited for a low transaction cost strategy however, since there are no
readily-available instruments (e.g. futures) to exercise such a trading strategy in
practice. As we expect the rotation strategies to have a considerable turnover,
we conduct our analysis on the S&P Barra Value and Growth indices (the value
premium). Transaction costs are expected to be relatively low as we are able
to buy and sell futures on these indices.® Both indices are constructed by di-
viding the stocks in the S&P 500 index according to just one single attribute:
the book-to-market ratio. This procedure splits the S&P 500 index into two,
mutually exclusive groups of stocks and is designed to track these accepted in-
vestment styles in the U.S. stock market. The Value index contains firms with
high book-to-market ratios and conversely the Growth index firms with lower
book-to-market ratios. The combination of both (market cap weighted) indices
adds up to the (market cap weighted) S&P 500.

Figure 1 and table 1 show that a strategy purely based on the value premium
would have witnessed some highly volatile periods. These series are the returns
of a long position in the Value index and a short position in the Growth index
throughout the entire sample period ranging from January 1988 to December
2002. Monthly maximum and minimum returns of this strategy are considerably
high: 9.74% and -12.02%. Summary statistics (see table 1) reveal that the spread
series exhibits excess kurtosis. The number of negative performance months of
this passive value strategy is approximately 47%. The average return on an
annualized basis is -0.86% with a standard deviation of 9.64%. We therefore

® In the case of for instance the High book-to-market minus Low book-to-market
(HML) series of [20], we can expect relatively high transaction costs as portfolios gen-
erally exhibit unacceptable liquidity features, particularly in a monthly long/short
setting.

5 In practice the maximum exposure of the trading strategy is still restricted by the
liquidity features of this future.
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Fig. 1. Cumulative performance of the value and size premiums (1988:01-2002:12).

Table 1. Summary statistics for the value and size premiums (1988:01 - 2002:12).
All numbers are annual data (in %) unless stated otherwise. The spread series for the
value premium are computed as returns of a long/short portfolio (long S&P Barra Value
index and short S&P Barra Growth index). The spread series for the Size premium
are computed as returns of a long/short portfolio (long S&P 500 index and short S&P
SmallCap 600 index). Prior to the introduction of the S&P SmallCap 600 index in
January 1994, the Frank Russell 1000 and Frank Russell 2000 indices have been used
as inputs for the small-large calculations.

Value premium Size premium

Mean -0.86 -0.91
Standard deviation 9.64 12.04
Information ratio -0.09 -0.08
Minimum (monthly) -12.02 -15.71
Maximum (monthly) 9.74 16.78
Skewness (monthly) 0.06 0.27
Excess kurtosis (monthly) 3.15 4.31
% negative months 47.22 51.11

conclude that pure and unconditional value investing in this particular sample
period has not been a very attractive trading strategy. Furthermore, we indeed
observe a cyclical pattern in the behavior of the premium. In some periods, like
for instance in the last years of the previous decade, growth stocks persistently
outperformed value stocks and in other periods value stocks clearly outperformed
growth stocks. A good example of the latter is the crisis in Technology (and hence
“growth”) stocks in the beginning of this century. A possible explanation for this
phenomenon could be that the sign of the value premium is strongly connected
with the business cycle and the economic regime. It is likely that value stocks
— relative to growth stocks — gain more from a surge of economic activity and
a sharp upward revision of sentiment, see e.g. [39]. As profit expectations turn
sharply and broadly positive at the bottom of the economic cycle, profitability
and earnings growth become a less scarce resource. In such an environment port-



folio managers start looking for stocks with typical value features. This largely
explains why value stocks generally belong to cyclical industries. Moreover, value
companies tend to belong to mature sectors of the economy. These sectors gen-
erally grow and shrink with the economy, whereas growth companies can offer
protection during weaker periods in the economy.

Analogously, the size premium series is created by comparing the S&P 500
index (large cap) and the S&P Small Cap 600 index.” The passive small-large
strategy has not performed satisfactorily during our sample period as well: a
mean return of 0.91% (see figure 1 and table 1). Investors that have followed
this strategy have experienced even greater fluctuations than those opting for the
passive value-growth strategy, as revealed by the maximum (16.78%) and min-
imum (-15.71%) monthly returns and the higher standard deviation (12.04%).
All of these findings cast serious doubt on the wisdom of persistently favoring
small stocks over large stocks in the past two decades.

2.2 Choice of the forecasting variables

We will introduce two classes of forecasting variables in this section. First, we
give a brief overview of potential technical variables. Subsequently, we will ad-
dress several macro-economic variables, which might shed some light on the
behavior of the spread series. There appears to be a striking similarity between
the chronological cumulative performance of the value and size premiums (see
figure 1), which suggests that the behavior of both premiums might be subject
to the same cyclical effects. We aim to provide a wide range of relevant fore-
casting variables, but we restrict ourselves to those claimed to be economically
interpretable in the literature on this subject.

Good examples of technical factors are the lagged value and small cap spreads
used by Levis and Liodakis[28]. Asness et al. [4] propose two other variables
of this class: the spread in valuation multiples and expected earnings growth
between value portfolios and growth portfolios. Other candidates are changes in
the implied volatility of the market, see [17], and price and earnings momentum
in the market, see for instance [33] and [8].

The class of economic variables is mainly related to economic fundamentals,
the business cycle and trends in corporate earnings. Examples of macro-economic
series can be found in a variety of papers on style rotation. Kao and Humaker [26]
document the influence of industrial production, the yield-curve spread, infla-
tion (CPI) and the corporate credit spread on the value premium. In their view,
industrial production reflects the corporate earnings cycle. In periods of high cor-
porate earnings growth, the often highly leveraged value (and small) companies
profit disproportionately. The composite leading indicators (CLI) can serve as
an alternative to measure the same relationship. The interest rate environment
can also have a substantial impact on the sign of the value premium. A yield

" Prior to the introduction of the S&P Small Cap 600 index in January 1994, the
Frank Russell 1000 and Frank Russell 2000 indices have been used as input for the
small-large calculations.



spread widening between long government bonds and short term T-bills will
probably hurt growth companies more than value companies as their profits are
based further into the future. Growth stocks have longer durations than value
stocks and are therefore more interest rate sensitive. These companies will un-
derperform most likely in a setting with steep yield curves, which implies rising
interest rates in the future. In the study of [28] the spread series are explained
by the level of inflation, changes in the short-term interest rate and the equity
risk premium respectively.®

In table 2 we list the variables actually used in our empirical analysis. In
the next section we describe and discuss the nonparametric modeling tool used:
Support Vector Regressions.

Table 2. Variables used in the style timing models based on Support Vector Regres-
sions.

Technical Variables

LagVmG Lagged Value/Growth spread

LagSmL Lagged Small/Large spread

VOL Volatility of the S&P 500

FPE 12-month Forward P/E of the S&P 500

MOM 6-month Momentum of the S&P 500

Profit cycle Year on Year change in earnings per share of the
S&P 500

PE dif Price/Earnings difference between Value and Growth
indices, or between S&P 500 and Small cap indices

DY dif Difference between dividend yields on Value and

Growth indices, or S&P 500 and Small cap indices

Economic Variables
Corporate Credit Spread The yield spread of (Lehman Aggregate) Baa over Aaa

Core inflation The 12-month trailing change in the U.S. Consumer
Price Index

Earnings-yield gap The difference between the forward E/P ratio of the
S&P 500 and the 10-year T-bond yield

Yield Curve Spread The yield spread of 10-year T-bonds over 3-month
T-bills

Real Bond Yield The 10-year T-bond yield adjusted for the 12-month
trailing inflation rate

Ind. Prod U.S. Industrial Production Seasonally Adjusted

Oil Price The 1-month price change

ISM (MoM) 1-month change of U.S. I.S.M. Purchasing Managers
Index (Mfg Survey)

Leading Indicator The 12-month change in the Conference Board Leading
Indicator

8 Liew and Vassalou [29] claim that past style performance can actually function as a
forecast for economic growth, which brings a new dimension to this literature.



3 Methodology

This section describes the model-building tool (Support Vector Regression) and
the construction of the SVR style rotation models. Alongside, we focus on the
qualities of SVR that justify their employment as a factor model tool.

3.1 Function estimation with SVR

Support Vector Regressions (SVR), and Support Vector Machines (SVM) in
general, are rooted in Statistical Learning Theory, pioneered by Vapnik [44]. In
essence, SVR are just functions, named “learning machines”, of which the basic
task is to “explore” data (input-output pairs?) and provide optimally accurate
predictions on unseen data. Extensive descriptions of SVR and SVM can be
found, for example, in [11,40, 41]. Here we present a complete, but still compact
and accessible representation of the basic SVR tool. The technical exposition
follows mostly the descriptions in the abovementioned papers.

First, it should be mentioned that the standard loss function employed in
SVR is the e-insensitive loss function, which has the following form:

ly = f(x)|e = maz{0, |y — f(x)] — €} (1)

Here € is predetermined and nonnegative, y is the true target value, x is a vector
of input variables and f(x) is the estimated target value. If the value of the
estimate f(x) of y is off-target by e or less, then there is no “loss”, and no
penalty will be imposed. However, if |y — f(x)| — e > 0, then the value of the loss
function rises linearly with the difference between y and f(x) above €. In practice,
the actual loss associated with a given training error is equal to C'(Jy — f(x)]¢),
where C is a nonnegative constant. The term |y — f(x)| is denoted by ¢ if
y< f(x)—e and by £ ify > f(x+e).

Let us consider the simplest case of function estimation first, where there is
only one input variable, x1, one output variable, y, and [ training data points,
and a linear relationship between the input and output variables (see figure 2).

Notice that in the case of figure 2, the total amount of loss is equal to
C(€ + &%), since there are two training errors. The SVR algorithm estimates
the parameters w; and b of the linear function y = wyx; + b for prespecified
values of € and C, ensuring that the resulting regression function achieves good
generalization ability. It should not be too “complex”, but, at the same time, it
should not make too many training errors. Complexity here is defined in terms
of “flatness” of the line, i.e. the smaller the slope of the line, the lower the com-
plexity. By striking a balance between the function’s complexity and accuracy
on the training data in the model-construction phase, the SVR offers a solution
to the common problem of overfitting.

9 The terms “inputs” and “outputs” in the machine learning domain stand for the
“independent variables” and the “dependent variables” in the finance domain.



Fig. 2. An SVR solution to the problem of estimating a relation between x; and y.
All points inside the white region in the figure are within € distance from the solid,
optimal regression line y = wix1+b, and therefore are not penalized. However, penalties
& and & are assigned to the two points that lie inside the shaded areas (given by
y — (wiz1 + b) > € and (wiz1 + b) —y > €). The optimal regression line is as flat as
possible, and strikes a balance between the area of the white region and the amount of
points that lie outside this region.

Figure 2 considers a one-dimensional input space, i.e. there is only one inde-
pendent variable. If the dimension of the input space equals n, we are looking for
the optimal regression function f(x) = (w-x)+b, with a vector of input variables
x = (21, x2,...,x,), “weight” vector w = (w1, wa, ..., w,), and the inner prod-
uct (W-X) = w121 +wexa+. . .+wyxy,. Flatness in that case is defined in terms of
the Euclidean norm of the weight vector: ||w ||= Vw12 + we? + ... + w,2. The
parameters of the linear SVR f(x) = (w-x)+b,i.e. w,b, & and £, =1,2,...,1,
can be found as the unique solution of the (convex quadratic) optimization prob-
lem:

Minimize
l
1 *
Sl wIP+C) €+ (2
i=1
Subject to

yi— (w-x)—b<e+§
(Ww-x)+b—y; <e+&
§i, &5 >0
fori=1,2,...,1



The first term of the objective (minimization) function in equation 2 deals
with the complexity, and the second term deals with the accuracy (or, amount
of training errors) of the model. In general, both terms cannot be minimal (or,
close to zero) at the same time. The nonnegative parameter C' determines the
trade-off between the flatness of f(x) and the amount of tolerated deviations.
If C is large, some flatness could be lost in order to achieve greater training
accuracy.

All points on the boundary of the e-insensitive region together with the points
outside that region (the training errors) are called “support vectors”. The com-
putation of the regression is solely based on the support vectors.

The minimization problem of equation 2 can be represented in dual form, as
a maximization problem:

Maximize
l

—35 2 (i —ai)(ay — aj)k(xi, x;) + (3)
i,j=1
l 1
+Y (ai—al)yi—e Y (i +af)
i=1 i=1
Subject to

0< a0 <Cyi=1,2,...,l and

where k‘(Xi,Xj) = (Xi . Xj).

Here we introduced with the kernel function k(x;,x;) instead of the inner
product (x; - x;) the possibility to replace the inner product with a different
kernel function (see below).

In SVR, the regression estimates, resulting from solving equation 3 take the
form of:

l
Fo) = (af — i)k(x,%;) +b (4)
i=1
The value of b can be found from the so-called Karush-Kuhn-Tucker (KKT)
conditions associated with the dual optimization problem (equation 3).

The training points in the series in equation 4 with coefficient (o) — o)
unequal to zero are exactly the support vectors. For each training point x; atmost
one of the two numbers «; and «] is unequal to zero. For the training points on
the boundary of the e-insensitive region holds either 0 < o, < Cor 0 < af < C
and for the training errors outside the e-insensitive region holds either a; = C
ora; =C.

Application of a kernel function transforms the original input space implicitly
into a higher-dimensional input space where an optimal linear decision surface

10



(corresponding to a nonlinear decision surface in the original input space) is
found. One of the most frequently applied kernels is the so-called Radial Ba-
sis Function kernel (RBF). The dimension of the feature space for the RBF is
infinite, which on first sight is counterintuitive from a complexity perspective:
that should lead to overfitting. However, the literature reports very good perfor-
mance of SVR using the RBF kernel (see, e.g. [11,15, 35]). Possible theoretical
explanations thereof have been suggested in [11]. Therefore, it appears that SVR,
with a RBF kernel are able to tackle the problems of overfitting effectively. For
this reason we apply this kernel in our research.

The RBF kernel is defined as k(x;,x;) = e Ixi=%ilI* where 7 is a manually
adjustable parameter. The Radial Basis Function kernel is equal to 1 if x; = x;
and drops monotonically to zero with the Euclidean distance ||x; —x; || between
the vectors x; and x;. The greater the value of +y, the faster the function k(x;, x;)
decreases. So, for large values of 7 the influence of a training point will be only
local and the risk of overfitting will be large. So, the larger -y, the more “complex”
the radial basis function is, and the smaller the number of training errors.

Summarizing, we have three parameters €, C, and -y, which have to be tuned
in order to find the optimal trade-off between complexity and training accuracy
of the SVR. One of the ways to find the best trade-off between these parameters
is via the standard cross-validation technique, which will be explained in section
3.2.

3.2 SVR style timing models

We will present the construction of the value rotation model only, since the size
rotation model is constructed analogically.'®

The input vectors for the SVR consist of the (historical) values for all 17
candidate explanatory factors as described in table 2. The outputs are the cor-
responding differences in returns between the S&P 500 Barra Value and Growth
indices. Each SVR model is trained on the data for months ¢ — 60 till month ¢ —1
in order to predict the output for month ¢. In order to find the optimal model
parameters €, C' and v we applied 5-fold cross-validation, a standard technique
in machine learning (see e.g., [42,45]) on the training data sets of 60 months. A
k-fold cross-validation procedure is utilized as follows: a given dataset is divided
into k folders of equal size; subsequently, a model is built on all possible (k)
combinations of k — 1 folders, and each time the remaining one folder is used
for validation. The model that achieves minimum mean sum of squared errors
on average (over the k validation folders) is considered to be the best. This best
model is said to achieve minimum cross-validation mean squared error, and the
parameters of this model are used in the final model for the prediction of month
t.

The advantage of using a cross-validation procedure is that it ensures that
model selection is based entirely on out-of-sample rather than in-sample perfor-
mance. The disadvantage however is that the procedure is rather time-consuming.

10 The software program used throughout the analysis is LIBSVM 2.4, developed by
Chang and Lin [14].
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A tiny part of the cross-validation procedure is visualized in figure 3, where the
vertical axis shows the cross validation minimal squared errors for C € (0, 32),
while keeping ¢ and the kernel function parameter ~ fixed at 1.0 and 0.007, re-
spectively. As suggested by the figure, the value for the minimum cross-validation
mean squared error is well defined.

Cross Validation Mean Squared Error
a

745}

Fig. 3. Five-fold cross validation mean squared errors associated with the penalty-on-
error parameter C' € (0,32) and fixed e-insensitive loss function parameter (¢) at 1.0
and Radial Basis Function parameter at 0.007. The to-be-predicted month here is April
2000. The “best” model is the one for which the combination of the three parameters
over suitable parameter ranges produces minimal cross validation mean squared error.

The predicted output , i.e. the value premium for month ¢ is used to decide
on our timing rotation strategy. A positive output will result in a signal “Value”
in which case we will buy the Value index and sell the Growth index, while
a negative output will result in a signal “Growth” with the opposite effect. In
order to avoid taking decisions based on noise, we treat an output value close to
zero as a “no signal” signal.!!

The SVR small-large strategy is defined analogically, using S&P SmallCap
600 and S&P 500 indices.

4 Empirical Results

In this section we will present the main results from value-growth and small-
large rotation strategies using SVR with different levels of transaction costs and
varying forecast horizons (one-month, three-month and six-month). Additionally,
we will show the output of an equally weighted combination of both strategies.
Throughout this empirical section we show returns that could be achieved when
we would have been able to forecast the signal correctly each month: MAX_VG

11 We used a range of (-0.05, 0.05) standard deviations relative to the average of the
estimates over the training period.
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(value-growth rotation) and MAX_SL (small-large rotation). The input for the
SVR model consists of 60 months of data on the whole set of 17 predetermined
factors. The passive style strategies are constructed in accordance with what
is expected in the literature: each month a long position is taken in the Value
index and a short position in the Growth index. The passive small-large strategy
consistently buys the S&P SmallCap 600 index and sells the S&P 500 index.

4.1 Value-growth rotation strategies

Detailed results of the SVR value-growth strategy can be found in table 3. What
strikes most at first sight, is that this strategy has produced much better results
than the passive strategy in the out-of-sample period starting January 1993 and
ending December 2002.

Under the assumption of zero transaction costs, the SVR strategy achieves
an annualized mean return of 10.30%, against a modest 0.24% respective return

| L
(U A

-1 . SV T V0 00 SR VO g 1 05 9% SR I TR T Pt 0 S ¢ SR (R 0 § S v
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Fig. 4. Investment signals (“value” = 1, “growth” = -1, “no signal” = 0) produced by
the SVR value-growth model investment strategy.

1993 1995 1997 1999 2001 2003

Fig. 5. Realized excess returns forecasted by the SVR value-growth investment strategy
for the 0 bp transaction costs scenario.

Combining these results with the standard deviations of returns yields (an-
nualized) information ratios of 1.04 and 0.02, respectively. Besides, even when
high transaction costs of 50 bp (single trip) are added into the calculations, the
realized SVR-model information ratio remains quite high (0.64), and statisti-
cally significant at the 5% two-tail level. When compared to other studies on the
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Table 3. Passive and Support Vector Regression value-growth rotation strategies.
Summary statistics for the passive value-growth and the Support Vector Regression
value-growth one-month-ahead return forecasting models for the period 1993:01 to
2002:12. The predicted variables are the monthly return differences between S&P Barra
Value and Growth indices. VinG denotes the passive value-growth strategy. MAX_VG
denotes the perfect foresight style rotation strategy. CV denotes the timing strategy
based on Support Vector Regression Cross Validation Mean Squared Error. All numbers
are annualized data unless stated otherwise. All strategies are long/short monthly
positions on the S&P Barra Value and Growth indices. The overall position for month
t + 1 is based on the signal produced by the optimal model based on 60 months of
historical data of all explanatory factors. Transaction costs are assumed to be 0 bp, 25
bp, and 50 bp single trip.

value-growth rotation
VmG CV, CV, CV, MAX_VG,
0 bp 25 bp 50 bp 50 bp

Mean 0.24 10.30 8.30 6.30 21.54
Standard deviation 10.95 9.95 9.90 9.90 7.83
Information ratio 0.02 1.04*** 0.84™* 0.64™* 2.75"**
Z(equality) 2.15™*  1.73" 1.30  5.00"**
Median -0.11 0.33 0.31 0.30  0.50
Minimum (monthly) -12.02 -5.51 -5.51 -5.51  -0.98
Maximum (monthly) 9.74 12.02 11.77 11.52  11.02
Skewness (monthly) 0.01 1.21 1.18 1.13  1.61
Excess kurtosis (monthly) 2.40 2.66 2.52 234 341
% negative months 45.83 32.50 49.17 50.00 19.17
Largest 3-month loss -11.55 -5.90 -6.40 -6.90 -1.99
Largest 12-month loss -22.86 -8.07  -11.51  -15.26 2.21
% months in Growth 0.00 53.33 53.33 52.33 45.83
% months in Value 100.00 28.33 28.33 28.33 54.17
% months no position 0.00 18.33 18.33 18.33  0.00

* indicates significance at the (2-tail) 10% level
** indicates significance at the (2-tail) 5% level
indicates significance at the (2-tail) 1% level

sokook

subject, for example [7] in the U.S. and [28] in the U.K., the SVR results seem
to demonstrate a significant improvement. The calculated Z(equality)-scores'?
provide further evidence (in the 0 bp and 25 bp transaction-cost environment)
of a significant performance difference. In addition, the SVR strategy is able to
capture 37.7%, 34.0%, and 29.3% of the return from the MAX_VG strategy un-
der 0 bp, 25 bp and 50 bp transaction costs, respectively. Table 3 further reveals
that the largest three-month and twelve-month losses associated with the SVR
value-growth model are substantially less than the respective losses incurred by

12 Z(equality) measures the risk-adjusted performance difference between a switch-
ing Support Vector Regression strategy and the passive value-growth strategy. The
Z(equality)-score is computed in a standard way (in line with, e.g. [22]).
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the passive strategy. Summarizing, all of these findings can serve as an indication
of robustness of the SVR strategy.

—=— one-month forecast horizon SVR strategy

—+— three-month forecast horizon SVR strategy
9
— - six-month forecast horizon SVR strategy

— Value-minus-Growth strategy

70

50

30

10

-10

-30

1993 1995 1997 1999 2001 2003

Fig. 6. Accrued cumulative returns from the passive value-growth strategy and the
Support Vector Regression (SVR) one-, three-, and six-month horizon strategies for
the period January 1993 — December 2002, under no transaction costs. The one-month
horizon strategy performs best, gaining most of its accumulated profits during turbulent
times on the financial market. In such periods, the three- and six-month horizon models
follow suit with a time lag, as logically expected. During relatively calmer periods, all
strategies perform similarly.

Figure 4 shows style signals associated with the SVR value-growth rotation
strategy. The predominant style signal during this period is “Growth”, with
some notable exceptions however. “Value” signals have been produced mostly in
1993, in the beginning of 1994, and in the first half of 2001. Almost no “Value”
signals have been given during the periods stretching from June 1996 till August
1998, and from June 1999 till November 2000.

Figure 5 presents the realized excess returns forecasted by the basic SVR
style timing strategy in the 25 bp transaction-cost scenario. It can be seen from
the figure that most of the accrued returns come out of the last four years of the
sample period, which actually appears to be the most volatile.

A number of further conclusions can be drawn by examining figure 6. Next
to the cumulative returns from the passive strategy and the SVR strategy that
predicts the one-month-ahead return difference under zero transaction costs,
the figure reveals the cumulative returns from two more strategies: the three-
and six-month-horizon SVR strategies. The latter two strategies are constructed
simply by taking the (unweighted) average of the signals produced by models
constructed up to three and up to six months before any predicted month, and
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investing according to this combined signal. Our procedure is equal to that used
in [25].

Table 4. Passive and Support Vector Regression small-large rotation strategies. Sum-
mary statistics for the passive small-large and the Support Vector Regression small-
large one-month-ahead return forecasting models for the period 1993:01 to 2002:12.
The predicted variables are the monthly return differences between S&P 500 and
S&P SmallCap 600 indices, respectively. SmL denotes the passive small-large strategy.
MAX_SL denotes the perfect foresight size rotation strategy. CV denotes the timing
strategy based on Support Vector Regression Cross Validation Mean Squared Error.
All numbers are annualized data unless stated otherwise. All strategies are long/short
monthly positions. The overall position for month ¢+ 1 is based on the signal produced
by the optimal model based on 60 months of historical data of all explanatory factors.
Transaction costs are assumed to be 0 bp, 25 bp, and 50 bp single trip.

small-large rotation
SmL CV, CV, CV, MAX_SSL,
0 bp 25 bp 50 bp 50 bp

Mean -1.26 10.71 9.11 7.51 27.04
Standard deviation 13.00 10.92  10.92 10.96  8.87
Information ratio -0.10 0.98*** 0.83"** 0.69** 3.05™**
Z(equality) 2.23**  1.93* 1.63 5.69""
Median 0.05 0.45 0.44 043  0.79
Minimum (monthly) -15.71 -7.70  -7.70  -7.70 -0.96
Maximum (monthly) 16.78 16.78  16.53  16.28 16.78
Skewness (monthly) 0.20 0.77  0..76 0.74  2.63
Excess kurtosis (monthly) 4.49 4.74 4.55 4.30 11.74
% negative months 51.67 33.33  44.07  45.83 10.00
Largest 3-month loss -21.63 -8.84 -8.84 -9.21  -1.18
Largest 12-month loss -31.85 -3.21 -5.46 -7.71 8.03
% months in Large 0.00 45.00  45.00 45.00 51.67
% months in Small 100.00 45.00  45.00 45.00 48.33
% months no position 0.00 10.00 10.00  10.00 0.00

* indicates significance at the (2-tail) 10% level
** indicates significance at the (2-tail) 5% level
indicates significance at the (2-tail) 1% level

sokok

The first striking feature is that most of the cumulative returns are accrued in
times of relatively higher volatility, and especially during 1993, in the beginning
of 1994, and between 1999 and 2002. The magnitude of the volatility of returns
can be observed by tracking the (monthly) changes in the cumulative returns of
the passive strategy. Larger shocks in these series correspond to greater volatility
of the value premium. A second interesting feature is that the basic one-month-
horizon SVR strategy strategy performs better than in the case of three- and
six-month forecast horizons. Apparently, it is worthwhile to time investment
styles on a very short horizon.
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Fig. 7. Accrued cumulative returns from the passive small-large strategy and the Sup-
port Vector Regression (SVR) one-, three-, and six-month horizon strategies for the
period January 1993 — December 2002, under no transaction costs. The one-month
horizon strategy performs best, gaining the predominant part of its accumulated prof-
its during turbulent times on the financial market. The three- and six-month horizon
models follow a very similar pattern, but perform slightly worse. During relatively
calmer periods, all strategies perform similarly.

4.2 Small-large rotation strategies

Detailed information on the small-large SVR strategy, the passive small-large
strategy and the maximum attainable MAX_SL strategy can be found in table
4.

In the out-of-sample period the passive small-large rotation strategy achieves
an annual return of -1.26%. The optimal MAX_SL strategy provides an annual
return of 27.04% in the 50 bp transaction-cost scenario, which is 5.50% more
than the corresponding result for the MAX_VG strategy. This reveals that the
potential benefit from size rotation seems to be much greater than the one from
the corresponding value-growth rotation. Table 4 shows that this extra poten-
tial can indeed be captured. For the zero-transaction-cost regime, for example,
the one-, three- and six-month forecast horizon small-large strategies produce
10.71%, 8.03% and 7.73% annual returns, while the respective results from the
SVR value-growth strategies are 10.30%, 5.84% and 5.02% respectively. More-
over, as in the value-growth case, the SVR size model is able to capture roughly
one third of the maximum attainable cumulative returns under all considered
transaction cost regimes.!3

As it turns out, the results from the robustness checks that were performed
on the SVR value-growth model are also valid for SVR size rotation. Under the
assumption of 50 bp transaction costs, the realized information ratio of 0.69 from

13 Results are available upon request.
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—— one-month forecast horizon SVR sirategy, 0bp single trip transaction costs
—— three-month forecast horizon SVR strategy, 25bp single trip transaction costs

~ six-month forecast horizon SVR strategy, 50bp single trip transaction costs

— Value-minus-Growth plus Small-minus-Big
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Fig. 8. Accrued cumulative returns from investing simultaneously according to the
Support Vector Regression (SVR) one-month horizon value-growth and small-large
strategies on the one hand, and from investing simultaneously according to the passive
value-growth and small-large strategies during the period January 1993 — December
2002, under different transaction costs.

the SVR size model is significant at the (two-tail) 5% level. The SVR size strat-
egy produces significantly different results from the passive size strategy. The
largest three-month and, especially, twelve-month losses from the SVR model
are drastically more bearable than the ones from the passive size strategy: -
8.84% vs. -21.63% and -3.21% vs. -31.85%, respectively, under zero transaction
costs. Notice, additionally, that the one-month strategy again outperforms the
longer horizon alternatives, consistent with the findings of the SVR value-growth
strategy, see figure 7.

4.3 Simultaneous value-growth and size timing

In case investors have decided to follow both the value and size SVR strategies
simultaneously at the beginning of the sample period, they would have witnessed
even greater relative gains as compared to sticking only to single-style timing
(see table 5 and figure 8 for details).

Indicative of this are the realized information ratios of simultaneous style
timing: 1.27, 1.06 and 0.84 under 0 bp, 25 bp and 50 bp single trip transaction
cost regimes, all significant at the (two-tail) 1% level. Not surprisingly, these
information ratios are higher than the ones associated with either value or size
timing individually, as investors actually diversify the risk associated with each
timing strategy. The information ratio of the simultaneous timing strategy is
negative (-0.06). Interestingly, the largest three-month and twelve-month losses
associated with simultaneous investing turn out to be quite tolerable: -4.10% and
-3.96%, assuming zero transaction costs. It appears that it pays to diversify the
market timing strategies, at least as far as value and size timing are concerned.

Admittedly, we expect all of our findings to be dependent on the historical
model-building horizon and on the length of the trading period. Choosing to
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Table 5. Simultaneous passive and Support Vector Regression value-growth and size
rotation strategies. Summary statistics for following simultaneously passive value-
growth (VmG) and passive small-large (SmL) strategies on the one hand, and Support
Vector Regression value-growth and small-large rotation strategies using a one-month
forecast horizon, on the other, for the period 1993:01 to 2002:12. The explanatory vari-
ables are listed in table 2. MAX denotes the perfect foresight value-growth and size
rotation combined strategy. CV denotes the timing strategy based on Support Vector
Regression cross validation mean squared error. All numbers are annualized data un-
less stated otherwise. All strategies are long/short monthly positions on the style and
size indices. The overall position for month ¢ + 1 is based on the signal produced by
the optimal model based on 60 months of historical data of all explanatory factors.
Transaction costs are assumed to be 0 bp, 25 bp, and 50 bp single trip.

simultaneous rotation
VmG plus  CV, cv, Ccv, MAX,
SmL 0 bp 25bp 50 bp 50 bp

Mean -0.51 10.51 8.71 6.91 24.29
Standard deviation 8.71 8.25 8.23 8.23 6.76
Information ratio -0.06 1.27*** 1.06™* 0.84*** 3.59***
Z(equality) 2.90"** 2.43™  1.96*  7.11%*
Median 0.06 0.44 0.41 0.39 0.56
Minimum (monthly) -7.26 -3.86  -4.24 -461 -0.94
Maximum (monthly) 8.4312.56 1244 12.31  12.06
Skewness (monthly) 0.13 1.51 1.49 1.45 1.87
Excess kurtosis (monthly) 1.12 5.29 5.30 5.23 6.05
% negative months 49.17 33.33  37.50  40.83 7.50
Largest 3-month loss -13.20 -4.10 -5.10 -6.10 -1.17
Largest 12-month loss -26.71 -3.96 -6.34 -8.82 6.77

* indicates significance at the (2-tail) 10% level
** indicates significance at the (2-tail) 5% level
indicates significance at the (2-tail) 1% level

Hokok

trade for a longer period could come at the expense of incurring formidable
transaction costs, as noted in the Data section. Additionally, varying the length
of the model-building horizon might yield a “best” horizon that would be difficult
to justify. Thus, future research could concentrate on both of these issues.

5 Conclusion

This paper examines whether short-term directional variations in the size and
value premium in the U.S. stock market are sufficiently predictable to be ex-
ploited by means of a tactical timing strategy. As a forecasting tool, we employ
so-called Support Vector Regressions (SVR). SVR have only recently been devel-
oped in the artificial intelligence field and have been rarely applied in a financial
context. Using SVR, we are able to circumvent the well-known problems of over-
fitting, especially in multivariate settings, in an elegant way.
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Our empirical findings clearly show that both premiums are highly pre-
dictable during the trading period. This comes at odds with the mainstream
literature that provides evidence for the long-term superiority of returns to value
vis-a-vis growth and small vis-a-vis large stocks. After adjustment for fair levels
of transaction costs this result still holds. Under high transaction cost levels,
expected to be relevant in a dynamic economic environment, it is difficult in
practice to obtain incremental benefits over style consistent strategies. That is
why it is critical to develop timing strategies that can be implemented using
index futures or low-cost trading baskets like exchange traded funds. In terms of
realized information ratios, a combination of both value-growth and small-large
timing produces most interesting results.

References

1. P. Ahmed, L. Lockwood, and S. Nanda. Multistyle rotation strategies. Journal of
Portfolio Management, 28:17-29, 2002.

2. R.D. Arnott, J.L. Dorian, and R. Macedo. Style management: The missing element
in equity portfolios. Journal of Investing, 1:13-21, 1992.

3. R.D. Arnott, D.L. Rice, C.M. Kelso, S. Kiscadden, and R. Macedo. Forecasting
factor returns: An intriguing possibility. Journal of Portfolio Management, 16:28—
35, 1989.

4. C. Asness, J. Friedman, R. Krail, and J. Liew. Style timing: Value versus growth.
Journal of Portfolio Management, 26:51-60, 2000.

5. R.W. Banz. The relationship between return and market value of common stocks.
Journal of Financial Economics, 9:3—-18, 1981.

6. R. Bauer, J. Derwall, and R. Molenaar. The real-time predictability of the size and
value premium in Japan. Pacific-Basin Finance Journal, 2004. . Forthcoming.

7. R. Bauer and R. Molenaar. Is the value premium predictable in real time? LIFE
working Paper 02-003, 2002.

8. R. Bernstein. Navigate the noise: Investing in the new age of media and hype. John
Wiley and Sons, New York, 2001.

9. P. Bossaerts and P. Hillion. Implementing statistical criteria to select return fore-
casting models: What do we learn? Review of Financial Studies, 12:405-428, 1999.

10. R. Burbidge and B. Buxton. An introduction to support vector machines for
data mining. In M. Sheppee, editor, Keynote Papers, Young OR12, pages 3-15,
University of Nottingham, March 2001. Operational Research Society.

11. C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2:121-167, 1998.

12. K.C. Chan and N.-F. Chen. Structural and return characteristics of small and
large firms. Journal of Finance, 46:1467-1484, 1991.

13. L.K. Chan and J. Lakonishok. Value and growth investing: Review and update.
Financial Analysts Journal, 60(1):71-86, 2004.

14. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines, 2002.

15. M.-W. Chang, B.-J. Chen, and C.-J. Lin. EUNITE network competition: Elec-
tricity load forecasting, 2001. Winner of EUNITE world wide competition on
electricity load prediction.

16. M. Cooper, H. Gulen, and M. Vassalou. Investing in size and book-to-market
portfolios using information about the macroeconomy: some new trading rules,
2001. mimeo, Columbia University, New York.

20



17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

M.M Copeland and T.E. Copeland. Market timing: style and size rotation using
the VIX. Financial Analyst Journal, 55:73-81, 1999.

Elroy Dimson, Stefan Nagel, and Garrett Quigley. Capturing the value premium
in the United Kingdom. Financial Analysts Journal, 59(6), 2003.

E.F. Fama and K.R. French. The cross-section of expected stock returns. Journal
of Finance, 47:427-465, 1992.

E.F. Fama and K.R. French. Common risk factors in the returns on stocks and
bonds. Journal of Financial Economics, 33:3-53, 1993.

E.F. Fama and K.R. French. Value versus growth: the international evidence.
Journal of Finance, 53:1975-1999, 1998.

S.A. Glantz. Primer of biostatistics. McGraw-Hill, third edition, 1992.

R.A. Haugen and N.L. Baker. Commonality in the determinants of expected stock
returns. Journal of Financial Economics, 41:401-439, 1996.

B.I. Jacobs and K.N. Levy. High definition style rotation. Journal of Investing,
5:14-23, 1996.

N. Jegadeesh and S. Titman. Returns to buying winners and selling losers: Impli-
cations for market efficiency. Journal of Finance, 48:65-91, 1993.

D.-L. Kao and R. Shumaker. Equity style timing. Financial Analysts Journal,
55:37-48, 1999.

J. Lakonishok, A. Schleifer, and R.W. Vishny. Contrarian investment, extrapola-
tion and risk. Journal of Finance, 49:1541-1578, 1994.

M. Levis and M. Liodakis. The profitability of style rotation strategies in the
united kingdom. Journal of Portfolio Management, 25(1):73-86, 1999.

J. Liew and M. Vassalou. Can book-to-market, size and momentum be risk factors
that predict economic growth? Journal of Financial Economics, 57:221-245, 2000.
A. Lo and A.C. MacKinlay. Data-snooping biases in tests of financial asset pricing
models. Review of Financial Studies, 3:431-468, 1990.

A. Lucas, R. Van Dijk, and T. Kloek. Stock selection, style rotation, and risk.
Journal of Empirical Finance, 9:1-34, 2002.

M. Maragoudakis, K. Kermanidis, N. Fakotakis, and G. Kokkinakis. Combining
bayesian and support vector machines learning to automatically complete syn-
tactical information for HPSG-like formalisms. In LREC 2002, 3rd International
Conference on Language Resources and Evaluation, Las Palmas, Spain, volume 1,
pages 93-100, 2002.

K.L. Miller, H. Li, and D.E. Cox. U.S. style rotation model, 2001. Industry Note,
Salomon, Smith Barney.

A. Monteiro. Interest rate curve estimation: A support vector regression application
to finance. Working paper, 2001.

K.-R. Miiller, S. Mika, G. Rétsch, K. Tsuda, and B. Schélkopf. An introduc-
tion to kernel-based learning algorithms. IEFEE Transactions on Neural Networks,
12(2):181-201, 2001.

K.-R. Miiller, A.J. Smola, G. Rétsch, B. Schélkopf, J. Kohlmorgen, and V.N. Vap-
nik. Predicting time series with support vector machines. In W. Gerstner, A. Ger-
mond, M. Hasler, and J.-D. Nicoud, editors, Proceedings of the International Con-
ference on Artificial Neural Networks, volume 1327 of Springer Lecture Notes in
Computer Science, pages 999-1004. Springer, 1997.

M.H. Pesaran and A. Timmermann. Predictability of stock returns: Robustness
and economic significance. Journal of Finance, 50:1201-1228, 1995.

21



38.

39.

40.

41.

42.

43.

44.

45.

46.

C.M. Rocco S. and J.A. Moreno. A support vector machine model for currency
crises discrimination. In S. Chen and P. Wang, editors, Computational Intelli-
gence in Economics and Finance, Advanced Information Processing, pages 171-81.
Springer-Verlag, 2003.

R. Schwob. Style and style analysis from a practitioners perspective: What is it and
what does it mean for european equity investors. Journal of Asset Management,
1:39-59, 2000.

A.J. Smola. Regression estimation with support vector learning machines. Master’s
thesis, Technische Universitat Miinchen, 1996.

A.J. Smola and B. Schélkopf. A tutorial on support vector regression. NeuroCOLT2
Technical Report NC-TR~98-030, University of London, UK, 1998.

M. Stone. Asymptotics for and against cross-validation. Biometrika, 64:29-35,
1977.

T. Van Gestel, B. Baesens, J. Garcia, and P. Van Dijcke. A support vector machine
approach to credit scoring. Bank en Financiewezen, 2:73-82, 2003.

Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag New
York, Inc., 1995. 2nd edition, 2000.

S.M. Weiss and C.A. Kulikowski. Computer systems that learn. Morgan Kaufman,
1991.

Brendon J. Woodford. Comparative analysis of the EFuNN and the support vector
machine models for the classification of horticulture data, 2001.

22



