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Abstract—For financial time series, the generation of error [5], [14], [25] is to predict next points of a time series. In fi-
bars on the point prediction is important in order to estimate the  nancial time series the noise is often larger than the underlying
corresponding risk. The Bayesian evidence framework, already qetarministic signal, and one also wants to know the error bars
successfully applied to design of multilayer perceptrons, is applied - ; . . . S
in this paper to least squares support vector machine (LS-SVM) ©N the_predlctlon. These den_5|ty (volat|l|ty) _pred|ct|ons give in-
regression in order to infer nonlinear models for predicting atime  formation on the corresponding risk of the investment and they
series and the related volatility. On the first level of inference, will, e.g., influence the trading behavior. A second reason why
a statistical framework is related to the LS-SVM formulation  density forecasts have become important is that the risk has be-
which allows to include the time-varying volatility of the market .56 3 tradable quantity itself in options and other derivatives.

by an appropriate choice of several hyperparameters. By the use ; .
of equality constraints and a 2-norm, the model parameters of In [15], [16], the Bayesian evidence framework was success-

the LS-SVM are obtained from a linear Karush-Kuhn-Tucker ~ fully applied to MLPs so as to infer output probabilities and the
system in the dual space. Error bars on the model predictions amount of regularization.

are obtained by marginalizing over the model parameters. The  The practical design of MLPs suffers from drawbacks like the
hyperparameters of the model are inferred on the second level of nonconvex optimization problem and the choice of the number
inference. The inferred hyperparameters, related to the volatility, : . .

are used to construct a volatility model within the evidence of h'd_den units. In.support vector machines (SVMs), the re-
framework. Model comparison is performed on the third level gression problem is formulated and represented as a convex
of inference in order to automatically tune the parameters of the quadratic programming (QP) problem [7], [24], [31], [32]. Ba-
kernel function and to select the relevant inputs. The LS-SVM  sijcally, the SVM regressor maps the inputs into a higher dimen-
formulation allows to derive analytic expressions in the feature sional feature space in which a linear regressor is constructed by

space and practical expressions are obtained in the dual space . . . it t functi Using M 's th
replacing the inner product by the related kernel function using minimizing an appropriate cost function. Using Mercers the-

Mercer’s theorem. The one step ahead prediction performances 0rem, the regressor is obtained by solving a finite dimensional
obtained on the prediction of the weekly 90-day T-bill rate and the QP problem in the dual space avoiding explicit knowledge of
daily DAX30 closing prices show that significant out of sample sign  the high dimensional mapping and using only the related kernel
fg;dggg;‘zcca” be made with respect to the Pesaran-Timmerman ¢,nction. In this paper, we apply the evidence framework to least
' squares support vector machines (LS-SVMs) [26], [27], where
Index Terms—Bayesian inference, financial time series predic- one uses equality constraints instead of inequality constraints
tion, hyperparameter selection, least squares support vector ma- 4 4 |east squares error term in order to obtain a linear set of
chines (LS-SVMs), model comparison, volatility modeling. - - . -
equations in the dual space. This formulation can also be re-
lated to regularization networks [10], [12]. When no bias term
|. INTRODUCTION is used in the LS-SVM formulation, as proposed in kernel ridge
: o regression [20], the expressions in the dual space correspond
OTIVATED by the universal approximation property o\f;é) Gaussian Processes [33]. However, the additional insight of

multilayer perceptrons (MLPs), neural networks have . . .
yer p b ( ) sing the feature space has been used in kernel PCA [21], while

been applied to learn nonlinear relations in financial time seri ) ) . .
[3], [12], [19]. The aim of many nonlinear forecasting method e use of equality constraints and the primal-dual interpreta-

tions of LS-SVMs have allowed to make extensions toward re-
current neural networks [28] and nonlinear optimal control [29].
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Fig. 1. lllustration of the different steps for the modeling of financial time series using LS-SVMs within the evidence framework. The modelnsaramete
the hyperparameteys, ¢; and the kernel parameter and relevant inputs of the time series fhodeg inferred from the dat® on different levels of inference.
The inferred hyperparametefs; »,; are used to estimate the parametérd, (i, ¢ ands of the volatility model*. The predicted volatility is used to calculate

: ; AR
error barS‘T@Mp,NH on the point predictionj; p v 11-

are inferred from the data on the second level on inference. Il. INFERENCE OF THEMODEL PARAMETERS (LEVEL 1)
Different hyperparameters for the variance of the additive noise

are estimated, corresponding to the time varying voIatiIitp_/ A_probabilistic framework [15], [16] is related to the
of financial time series [23]. While volatility was typically S-SVM regression formulation [26], [27] by applying Bayes

modeled using (Generalized) Autoregressive Conditionaligle on the first level of inference. Expressions in the dual space
: h ilistic | X tth - ved.
Heteroskedastic ((G)ARCH) models [1], [6], [30], more r the probabilistic interpretation of the prediction are derived

recently alternative models [9], [13], [17] have been propose'\a(\j
that basically model the observed absolute return. In this paper,
the latter approach is related to the Bayesian estimate of thén Support Vector Machines [7], [24], [27], [32] for nonlinear
volatility on the second level of inference of the time serig€gression, the data are generated by the nonlinear fungtien
model. These volatility estimates are used to infer the volatilitf{:) + ¢; which is assumed to be of the following form
model.
On the third level of inference, the time series model evidence Yy = nga(afi) +b4¢ (1)
is estimated in order to select the tuning parameters of the kernel
function and to select the most important set of inputs. In a simith model parameters € IR"/ andb € IR and wherez; is ad-
ilar way as the inference of the time series model, the volatilitiitive noise. For financial time series, the outpue IR is typ-
model is constructed using the inferred hyperparameters of thally a return of an asset or exchange rate, or some measure of
time series model. A schematic overview of the inference tfe volatility at the time index. The input vector:; € IR™ may
the time series and volatility model is depicted in Fig. 1. Theonsists of lagged returns, volatility measures and macro-eco-
LS-SVM formulation allows to derive analytical expressions inomic explanatory variables. The mappipg) : R" — R™/
the feature space for all levels of inference, while practical eisa nonlinear function that maps the input vectanto a higher
pressions are obtained in a second step by using matrix algetp@ssibly infinite) dimensional feature spali¥’/. However,
and the related kernel function. the weight vectorv € IR™ and the functiony(-) are never
This paper is organized as follows. The three levels for imalculated explicitly. Instead, Mercer’s theorelf{z;,z) =
ferring the parameters of the LS-SVM time series model ag€x;)? (x) is applied to relate the functiop(-) with the sym-
described in Sections II-1V, respectively. The inference of thmetric and positive definite kernel functidfi. For K (x;,x) one
volatility model is discussed in Section V. An overview of theypically has the following choicesk (z;,z) = zz (linear
design of the LS-SVM time series and volatility model withirSVM); K (z;,z) = (z¥z + 1) (polynomial SVM of degree
the evidence framework is given in Section VI. Application exd); K (x;, ) = exp(—||z — z;||3/o?) (SVM with RBF-kernel),
amples of the Bayesian LS-SVM framework are discussed\vheres is a tuning parameter. In the sequel of this paper, we
Section VII. will focus on the use of an RBF-kernel.

Probabilistic Interpretation of the LS-SVM Formulation
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Given the data point® = {(=;,;)}Y; and the hyperparam-  Substituting (3) and (4) into (2) and neglecting all constants,
etersp and(i.n = [¢1,¢z,- -, ¢v] of the modelH (LS-SVM  application of Bayes’ rule yields
with kernel functionk), we obtain the model parameters by
maximizing the posterioP(w, b|D, log pi, log ¢1.x, H). Appli- P(w,b|D,log t,1log C1.n, H) ,
cation of Bayes’ rule at the first level of inference [5], [15] gives: T A G o
X exXp (——w w) exp | — Z Eei .
=1

P(w7 b|D710gN7 IOgCl:NvH) Taki th ti | ith th . teriori del
B P(D|w, b, log I, log Cl:Na ’H)P(w, b| log I, log Cl:Na H) aking the negative logarithm, the maximaposteriorimoade

= arametersy andb are obtained as the solution to the
P(D|log 1, log Gy, H) P pp ORC OMD

@ following optimization problem:
N

where the evidenc®(D|log 1, log (1.n, H) follows from nor- min Ji(w,b) = pEw + Z GEp,i )
malization and is independent aof andb. =1

We take the priorP(w,b|log u,log (1., H) independent with
of the hyperparameter§, i.e., P(w,b|log p1,log (1.v, H) = LT
P(w, b|log i, H). Bothw andb are assumed to be independent. Bw = yww, ©)
The weight parameters; are assumed to have a Gaussian Ep,; =3¢ = 5(y; —who(xz;) — b)*. (7

distribution The least squares problem (10), (11) is not explicitly solved in
[\ /2 L w andb. Instead, the linear system (13)danandb is solved in
P(w|logp, H) = (%) exp (—ngw) the dual space as explained in the next Subsection.
The posterior P(w, b|D,log u,log(1.x,H) can also be
with zero mean, corresponding to the efficient market hypothwitten as the Gaussian distribution
esis. A uniform distribution for the prior obis taken, which
can also be approximated as a Gaussian distribution P(w, b|D,log i, log Cu.x, H)

_ 1 1 -
N 12 T Ve g < 29 ¢ g> ©
P(b|log == —— .
( | Ogo’lMH) < o ) exp < 205) Wlthg: [w—w]wp;b—b]wp] andQ=Cova(w,b) =8(ng),
. _ _ _ where the expectation is taken with respectit@nd b. The
with o, — oo. We then obtain the following prior: covariance matrix) is related to the Hessia of the LS-SVM
cost function7; (w, b)
P(w, b|log
(wv | og i, H) ) 82g71 82k71 —1
= (ﬁ)m/Q exp (—HwTw) ! exp <—b—2> Q=H'!= Hy Hp|™ — | dw?  Owdb
27 2 \/27r03 20y, - o Hﬂ Hy, T PR PR
BNME (T w2
= (37)  ew(-5uTu). ®) (©)

Assuming Gaussian distributed additive noise;

G = 1.---,N) with zero mean and variancéjl, the B. Moderated Output of the LS-SVM Regressor
likelihood P(D|w, b,1log (1.x, H) can be written as [16] The uncertainty on the estimated model parameters results
into an additional uncertainty for the one step ahead predic-
P(D|w,b,log(i:n, H) tion gnrp, vy1 = wi;pe(x) + bap, where the input vector €
N N\ 1/2 ‘ IR™ may be composed of lagged retums, yn_1, ... and of
= H <_Z> exp <_§e§> P(z;). (4) other explanatory variables available at the time indexBy
o N2 2 marginalizing over the nuisance parameterandb [16] one

. . ) ) obtains that the predictiofix 41 is Gaussian distributed with
Takmg the rr:egatr;vel'llc()glgr:nhgw :an neglectlné:] all C(r)]nstamﬁ,eangMRNJrl =2y p = why py(z) +bap and variance?
we obtain that the likelihood (4) corresponds to the ST 5L, + 02, The first term}., corresponds to the volatility

term 37, B, Other distributions with heavier tails like, 5 the next time step and has to be predicted by volatility model.

e s aesoan i o e e eV  disoss he nfeence o an LS SV oty
[} - H - —_ 2

¢! is used here [1], [6], [30] and is recently motivated bﬁ](;ﬂeléo pred'CtMPJ\’j[rl._tCNJrlthThefeC(:ng terrgzls due )

2]. The corresponding optimization problem correspongg e aussian uncef amyon_ egs imated modet parameters

[ : . g andb in the linear transform = w’ ¢(z) + b.

to taking the 2-norm of the error and results into a linear 1) Expression for,, p: Taking the expectation with respect

Karush-Kuhn-Tucker system in the dual space [20], [26], [ZH) the Gaussian distribution over the model parameteasdd
while SVM formulations use different norms with inequality,[he meane,, p is obtained

constraints which typically result into a Quadratic Program-
ming Problem [7], [24], [31], [32]. zyp = E{z} = wipp(z) + by p.

+1
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In order to obtain a practical expression in the dual space, dmetaking the 2-norm. However, sparseness can be obtained by
solves the following optimization problem corresponding to (5kequentially pruning the support value spectrum [27].

2) Expression for?: Sincez is a linear transformation of
the Gaussian distributed model parameteendb, the variance

N
- T L ST 2
min J1(w,e) = FW W + 5 ;Cz@i (10) o2 in the feature space is given by

w,e

st oy =whols) + b+ e, t1=1,....,N. (11) )
O—Z

E{(z = zmp)?}
To solve the minimization problem (10), (11), one constructs the = &{[(who(x) +b) — (wi;po(x) +brp)]*}

£
Lagrangian (x)T H () (16)

N
Ly(w,b,e;0) = Di(w,e) = > aifw’ () +b+ei—u]  with (z) = [p(x); 1]. The computation for2 can be obtained

i=1 without explicit knowledge of the mapping(-). Using matrix
whereq; € IR are the Lagrange multipliers (also called SUIOpOa_flgebra and reple_lcing inngr products by the _relate_d ker_nel func-
values). The conditions for optimality are given by tion, the expression fos? in the dual space is derived in Ap-
pendix A:
4 N
oL,
B =0—w= z;omp(xz)
= 1
N 2 T T T
aL 02 =0(x)' UgQpU&io(zx)U* + —K(z,x
LA P (2 UaQUES@UT + K (z,2)
i= 2
oL, ' (12) —Z0(2)TUcQpUEQD, 1,
3 IO—>C¥Z‘I’}/Z‘CZ‘, i:l,...,N 5¢
c; 2
oL —pu 9(x)' D, 1, 17
B = =0— b=y —wlp(z;) — e, +s<N ()" De (7
»
¢ i = 1 1
N i=1...,N +— + 517D QUQpUEQD, 1,
S< S
with v = ¢/ (@ = 1,...,N). Eliminatingw and e, one 1 T<
obtains the following linear Karush—Kuhn—Tucker systemin +F1W DQD 1,
andb [26], [27] ¢
0 17 .
‘ v |:£:| — |:2:| (13) with QD = (HINC“ + DG)_1 — N_IINQ;;r and the
1, ‘ Q4 D! o Y scalars; = Zf\;l ¢i. The vectorf(z) € RY and the
matrices Us € RN and Dg e RN Nerr gre
with! & = [y1;..5yn] Lo = [15...51], ¢ = [es;...;en], defined as follows:8;(z) = K(z,z;), ¢ = 1,...,N;
a = [og;...;an] and D, = diag([yi;...;yn]). Mercer's Ug(:,i) = (I/G7iQI/G7i)1/21/G7i,i =1,...,Njg < N—-1and
theorem [7], [24], [32] is applied within th@ matrix D¢g = diag[Ag1;.. .5 Aa,No]) Wherevg ; and A ; are the

solution to the eigenvalue problem (45)
Qij = (@) pxy) = K(wi, ). (14)

1
_ _ (D¢ — —D:1,1E D) Qwg ;
The LS-SVM regressor is then obtained as 8¢
= )‘G,il/G,ia 1= 1, ey Neff S N —1. (18)

N
z :Ei_ o K(z,x;)+ b . .
MP =1 ( )+ bur (15) The number of nonzero eigenvalues is denotedvby < N.

The matrixD; = diag([¢1,...,¢n]) € RY*Y is a diagonal
Efficient algorithms for solving large scale systems such as e.gatrix with diagonal element®,(¢,%) = ¢;.
the Hestenes-Stiefel conjugate gradient algorithm from numer-
ical linear algebra can be applied to solve (13) by reformulating 1Il. | NFERENCE OF THEHYPERPARAMETERS(LEVEL 2)
it into two linear systems with positive definite data matrices . . , . .
. . . In this Section, Bayes' rule is applied on the second level of
[27]. Also observe that Interior Point methods for solving the ) .
. . m;erence [15], [16] in order to infer the hyperparamefend
QP problem related to SVM regression solve a linear system o . :
. . i .- Whereas it is well-known that the Bayesian estimate of the
the same form as (13) in each iteration step. Although the effeg- . S . . . .
. .__variance is biased, this problem is mainly due to the marginal-
tive number of parametergq are controlled by the regulariza-.

. - ization (see also (31) in this Section). The cost function related
tion term, the sparseness property of standard SVMs [11]is I?g he Bayesian inference of the hyperparameters is derived first.

IThe Matlab notatiofX; X.] is used, wherfY; X,] = [X7 XZ]7.The We then discuss the inferencepaind¢ = ¢, (: = 1,...,N)

diagonal matrixD., = diaga) € R™*" has diagonal elemenf3. (i, i) =  and the inference of nonconstaft
a(i),i=1,...,N, witha € R¥. ¢
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A. Cost Function for Inferring the Hyperparameters with the identity matrixIy € RN*Y and with the corre-
sponding diagonal matri;, = diag([Ag 15 Ag N ]) =
¢~ tD¢g. The eigenvalue problem (22) is now indepenéent
from the hyperparametef. By defining Ep = Y | Ep
and by usings; = N ¢, the level 2 optimization problem (21)

The hyperparameteps and¢; (¢ = 1,...,N) are inferred
from the dataD by applying Bayes' rule on the second level

P(logl% 108 Cl:]\" D7H) becomes
_ P(D|log i, log C1.v, H)P(log 1, log (1. |H)
B P(D|H) ] Negr /
x P(D|logu,log (1:n, M) (19) mm T3(11,¢) = Ti(wmp,byp) + 3 ; log(p + (A i)
Neff . N -1 )
where a flat, noninformative prior is assumed on the hyperpa- Ty logp — B log C. (23)

rameters: and(;. The probabilityP(D|log i, log (1.x, H) IS
equal to the evidence in (2) of the previous level. By substitutiorhe gradients of/s (s, ¢) towardy and¢ are [15]
of (3), (4) and (8) into (19), one obtains

Nerr

== = Ew(wmp)+5 Y ——— — 24
P(log i, 1oz Gix | D, ) gu ~ Wl t3 ) a5, @
N Nogr /
[0 aj?) 1 - )‘Gi N-—-1
i [[v& 0 _ baar) + - i N1
[[ exp(~Ji(w,b)) oc = Polunr:bur)+ z:: it Qg 2
VdetH  exp(—39THg) (25)

N
ny H G Since the LS-SVM cost function consists of an error té&fm
e i . . . . .
i} with regularization termEyy (ridge regression), the effective
T detH exp(=Ji(wyp,bar)).  (20) nu_mbgr of parameters [5], [16] is de(_:reased by applying regu-
larization. For the LS-SVM, the effective number of parameters
~Yerr 1S equal to

Using the expression for déf from Appendix A and taking the
negative logarithm, we find the maximuarposterioriestimates

piarp andCay s by minimizing the level 2 cost function: ALV
=14y G
=1 W + C)\G7i
~ (26)
T2, C1:nv) = pEw (wnp) + Z GEpi(wavp,bup) _ _ o
el where the first term is due to the fact that no regularization is
7 Nerr Nog applied on the bias terinof the LS-SVM model. Sincé&/.g <
+5 Z log(p + Ag i) — —— logp N — 1, we cannot estimate more effective parameters than the
2 4 2 . . .
i=1 number of data pointsv, even if the parameterization of the
N N
1 1 model[w; b] hasn; + 1 degrees of freedom before one starts
) Zbg G+ log <Z Ci) training, with typicallyn; > N.
=1 =1 In the optimum of the level 2 cost functiafiz(x, ¢), both

(1) the partial derivatives (24) and (25) are zero. Putting (24) equal
to zero, one obtain8u s p Ew (warr) = Yeg — 1, While one
L Lo . . ObtainSZC]waD(IU]wp,b]wp) = N — Yeft from (25) This
This is an optimization problem it + 1 unknowns and may equation corresponds to the unbiased estimate of the variance
require long computations. Therefore, we will first discuss tf@lp = 2Ep /(N — ) within the evidence framework.
inference in the case of constafit = _C. This value for the “Tpese optimal hyperparameters; » and¢,;p are obtained
hyperparameters will then be used to infer the nonconsgtant by solving the optimization problem (23) with gradients
(24) and (25). Therefore, one needs the expressions for

B. Inferring i and¢; = ¢ Ep = Y0, Ep,; andEw = Jwk, ywyp. These terms can

We will now further discuss the inference of the hyperpd€ expressed in the dual variables using tTe conditions (12) in
rameters for the special case of constant= ¢. In this case, the optimum of level 1. The first terdp ; = 3¢ is the easiest
one can observe that the eigenvalues; in (18) are equal to t0 calculate. Using the relatiam; = v;c; of (12), we obtain

Aai = (Ag,;» Where the eigenvaluek; ; are obtained from L2 1 O2an?
the eigenvalue problem B, Lo 1 () 27
Dy 2 3 - (27)
2y 2 G
1 T 20bserve that in this case, the eigenvalue problem (22) is related to the eigen-
In - N 1,15 QL’G,i value problem used in kernel PCA [21]. The corresponding eigenvalues are also
used to derive improved bounds in VC-theory [22]. In the evidence framework,

= )\/C;7il/G7i, i=1,...,Nog < N -1, (22) Ccapacity is controlled by the prior.
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The regularization terniyy is calculated by combining the first where bothe; ando?, are obtained from the LS-SVM model
and last condition in (12) with constant(y; . The above assumption corresponds to an
iterative method for training MLPs with constagi15], [16]

1 & T but does not guarantee convergence. We did not observe conver-
Ew =5 > ailuwiipp(e)] gence problems in our experiments. The ‘noisy’ estimates will
Tl not be used to infer the LS-SVM time series model with non-
_ 1 ZO‘ [ ki } (28) constant hyperparametes; ;. Instead, the estimateS, p;
2 = vim T T ome are used to infer the LS-SVM volatility model in Section V.

The modeleanpyi of the LS-SVM volatility model are far less

In the case of constar, the parameters; are also constant noisy estimates of the corresponding volatility and will be used

vi =y =</ to infer the LS-SVM model time series model using a weighted
least squares error term.

C. Inferring x and ¢;

In the previous Subsection, the conditions for optimality of IV. M ODEL COMPARISON (LEVEL 3)

the level 2 cost functiots (1, ¢) with respect tqia, » and(a In this Section Bayes’ rule is applied to rank the evidence
were related to the number of effective parametefs In this  of different models; [15], [16]. For SVMs, different models
Subsection, we will derive the conditions in the optimum ofy, correspond to different choices for the kernel function; e.g.,
Ja(, Gi) with respect tog; to infer the Bayesian estimate offor an RBF kernel with tuning paramete, the probability of
the volatility. S the corresponding models; is calculated in order to select the
_The gradient.7, /9y is derived in a similar way as the gra-yning parameter; with the greatest model evidence. Model
dientd7s/9p and is obtained by formally replacing\ ; by comparison can also be used to select the relevant set of inputs
Ag,i in (24). By defining the effective number of parameters &gy ranking the evidence of models inferred with different sets
of inputs. The model selection of the time series model is per-
formed before inferring th&,,r;, obtained as the outputs of
the volatility model; and therefore we will assume a constant
¢ =¢,i=1,...,N in this Section.
a similar relation betweep,; » and~.g holds in the optimum By applying Bayes’ rule on the third level, we obtain the pos-

N
Aa,i
Yo =1+ Yy — (29)
~ ptAg

of J3 as in Section II-B. terior for the model;:
For the gradiend 7> /3¢;, one obtains [starting from the neg-
ative logarithm of (20)]: P(H;|D) < P(D|H;)P(H;). (33)
0> =Ep,;+ 1 Tr {H—l aH} 1 At this level, no evidence or normalizing constant is used since
9Gi 2 9Gi 26 it is impossible to compare all possible modgls. The prior
=Ep;+ 10? _ L i=1,...,N (30) F(H;)overallpossible models is assumed to be uniform here.

oG] Hence, (33) becomeB(H,|D) « P(D|H;). The likelihood
P(D|H;) corresponds to the evidence (19) of the previous level.
For the priorP(log 1ias P, log {ar p| ;) ON the positive scale pa-
. - y rametersy and¢, a separable Gaussian with error bafs, .
} = TrH p(wa)p(wi)” )] = o7, and e ¢ Is taken. We assume that thesepriori error bars
are the same for all modefs;. To calculate the posterior ap-
using (16) and the expression f&f. In the optimum, the gra- proximation analytically, it is assumed [15] that the evidence

where

T

oOH
Tr |[H1
r[ 0

dient is zero, which yields P(log p1,1og ¢|D, H;) can be very well approximated by using
a separable Gaussian with error bafs, ,,;» andoiog¢|p. As
2¢mpiEp i(wap,bap) in Section Ill, the posterioP(D|H;) then becomes [16]
Il—OgiC]\/[pﬂj, L=1,,N (31)
P(D[H;) oc P(D|log pinpylog Cups ;)
The last equation has to be interpreted as the unbiased estimate . Jlog | Dlog ¢|D (34)
of the variance in the Bayesian framework, as mentioned in the Tlog 1 Tlog ¢

introduction of this Section. The maximuwaposterioriestimate
of the variancel /(xr p; is equal to the squared error, correcte®anking of models according to model qualRyD|#;) is thus
by the relative model output uncertaingy/(1 — CA4p7ia§i). based on the goodness of the fit (20) and the Occam factor [15],
Since the estimateS, p; are essentially only based on one obwhich punishes for overparameterized models. We refer to [16]
servation of the time series, these estimates will be rather noi&y. a discussion on relations between the evidence framework

Therefore, we will infer the hyperparametefs p; by as- and other theories of generalization behavior like, e.g., min-
suming that we are close to the optimum imum description length and VC-theory.

Following a similar reasoning as in [15], [16] approximate

gjm ~ ef + o-i_, i=1,...,N (32) expressions for the errors barg, ,,|p andoy,. ¢|p are obtained
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by differentiating (21) twice with respect jpand(: 0120g D = The hyperparametefs and(; = ¢ (i = 1,... , V) of the
2/(Yet — 1) andgfogch ~ 2/(N — v.g). One then obtains  Vvolatility model correspond to the regularization tefy, and
error termEp, respectively. Observe that we assume a constant
variance of the noise in the volatility model. The hyperparame-

P(D[H;) S tersji and( are obtained by minimizing
~ P pShr
Negr - - . - Ner
. ~ ~ > ’
(et = DV = vew) [ ] 1rarr + Carr Xz wmin Ja(i1, ¢) = (@) + 5 2 log(/i + (g ;)

=1 ’ =
: N, . N-1 ~
(35) — =5 logfi— —5—logl, (38

V. VOLATILITY MODELING whereEp (i p, bap), Ew (barp) and)y, . are obtained in a

Since the volatility is not an observed variable of the time s&iMilar way as in Section |1l from (27), (28) and (22), respec-
ries {y;}¥,, we will use the inferred hyperparameteg p;, tively. Similar relations as in Section 11I-B exists, relating the

i=1 N, from (32) to train the LS-SVM volatility model regularization term and the error term to the effective number
ooy N, .

The inverse values/(y;p; correspond to the estimated variOf parameters i

ances of the noise; on the observationg;. Instead of mod- ) N CMPXc";i

eling and predicting the inferred, p; orgjpi directly, we will Yot = 1+ :

N _ o ~ [iip 4 Curde
modeICMlﬁ, which corresponds to the prediction of absolute =1 e QupAg

returns [13], [17], and [30]. Indeed, one can observe that whehthe volatility model?.
the model output uncertainty? ; is small (ypi02 < 1), In a similar way as in Section IV, the probability of different
then (30) become&yp; ~ 1/(33.7 In this case, the pfediction of volatility models7; can be ranked. This then yields a similar

;41143 corresponds to predicting the absolute valugs which ~€Xpression as (39):

corresponds to the prediction of the absolute returns when the no N N1

time series model is used (see, e.g., [13], [17], [30]). We brieflyP(D|H,) « Harp AL

discuss the three levels of inference and point out differences ~ R otf -

with the inference of the LS-SVM time series model. (Fert = DN = Terr) H feap + CMPXG‘,i
The outputg; € IR of the LS-SVM volatility modelf(z) = =1

w7 @(%) 4 b are the inferred;ﬁ‘]ﬁj values of the second level (39)

of the time series model, i.ej; = (3;7,;. The inputst; € R”
are determined by the user and may consist of lagged absolute VI. DESIGN OF THEBAYESIAN LS-SVM

returns [13], [30] and other explanatory variables. Input pruning we will apply the theory from the previous Sections to the

can be performed on the third level as explained in the previogssign of the LS-SVM time series and volatility model within
Section. In a similar way as in Section II, the model parametaffe evidence framework.

w andb are inferred from the dat® = {(,,4;) ﬁ\;}\by mini-

mizing J, (o, b) = ju o +¢, Ep, with Ep = 1 3 é2and  A. Design of the LS-SVM Time Series Model

& = g; — (wHp(#;) +b),i = 1,...,N. By introducing the  The design of the LS-SVM time series model consists of the
Lagrange multipliersy; € IR, the following linear set of equa- following steps (see also Fig. 1):

tions is obtained in the dual space: 1. The selected inputs are normalized to zero mean and unit

T . variance [5]. The normalized training data are denoted by
0 ‘ L b|_ {E} (36) D = {(z;,y:)}X,, with z; € IR™ the normalized inputs
1, ‘ Q-+ Dgl andy; € R the corresponding outputs, transformed to
become stationary.

with § = [§1;...;9n8], & = [dq;...;an] and D5 = F1n, 2. Select the modet/; by choosing a kernel typ& ;, e.g,
wherey = (/i. The matrixQ2 € RY*Y has elements an RBF-kernel with parameter;. For this model, the
Qu; = K(i,#,). The expected valug, b, = zap of the hyperparametergyp and Gy p; = Cup are inferred
LS-SVM volatility model is obtained as ' from the data on the second level. This is done as follows:

(a) Solve the eigenvalue problem (22) to find tNigy

Gvp = F(&) = 0% p@(Z) + by p important eigenvalues, ; and the corresponding

N eigenvectors g ;.
- Zdif((i”:ii) +hyp. (37) (b) Minimize J3(x,¢) from (23) with respect tqu
= and (. The cost function (23) and gradients (24),
(25) are evaluated by using the optimal time series
In a similar way as in Section 11-B, one may derive error bars on model parametersy;p andby;p. These are ob-
the predicted volatility measurgy, . This uncertainty on the tained from the first level of inference in the dual

volatility forecasts is not in the scope of this paper. space by solving the linear system (13).
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(c) Calculate the number of effective parameterg C. Generating Point and Density Predictions

defined in (26). Given the designed LS-SVM time series and volatility model

(d) Calculate the volatility estimateg; s with ¢ p; ; andH;, the point predictionj,; x4, and corresponding
from (32) (these values will be used to infer th%rror baro. are obtained as follows.
yV+1

latili I . . . o
volatility model ). 1) Letthe inpute of the time series model be normalized in
3) Calculate the model evidend®D[7;) from (35). For the same way as the training dda The point prediction
an RBF-kernel, one may refing; such that a higher Onp.n41 is then obtained agypyyi = zup from
model evidence is obtained. This is done by maximizing  (15).
P(D[H,) with respect tar; by evaluating the model ev- 2y Normalize the input of the volatility model in the same
idence for the refined kernel parameter starting from step ~ \yay as the training dat®. The normalized input is de-
2(a). ) . ) noted byz. Predict the volatility measuré;jlgr 4 =
4) Select the modebt; with maximal model evidence f(&) from (37). Calculate error bar, due to the model
P(D|H;). If the predictive performance is insufficient, uncertainty from (17). The total uncertalnty on the pre-

select a different kernel functioR; (step 2) or select a 2
) . diction is thens? = .
different set of inputs (step 1). N CMPA 1t
5) Usethe outputsjgllﬁ? of the volatility model to refine the
time series model. This is done in the following steps: VII. EXAMPLES

(&) Solve the eigenvalue problem (18) to find tNg; The design of the LS-SVM regressor in the evidence frame-
important eigenvalues ; and the corresponding work is applied to two cases. First, the performance of the
eigenvectors/g ;. LS-SVM time series model is compared with results from the

(b) Refine the amount of regularizatipnThis is done literature [4], [8] for the case of one step ahead prediction of
by optimizing 72(u, ¢;) in (21) with respect tq:, the US short term interest rate. Second, we illustrate the use of
while keeping¢; = . The gradien®.7> /9. is  the LS-SVM time series and volatility model for the one step
obtained by formally replacingA;; ; by A¢; in ahead prediction of the DAX30 index. All simulations were
(24). The cost function and the gradient are evagarried out in Matlab.
uated as in step 2(b) by inferringandb,, p in the
dual space on the first level and calculatiig and  A. Prediction of the US Short-Term Interest Rate

Ey from (27) and (28), respectively. The LS-SVM times series model is designed within the

© fCaIcuIate the effective number of parametgss evidence framework for the one step ahead prediction weekly
rom (29). Friday observations of the 90-day US T-bill rate on secondary
Notice that for a kernel function without tuning parameter likemarkets from 4 January 1957 to 17 December 1993, which
e.g., the polynomial kernel with fixed degrée steps 2) and s the period studied in [4] and [8]. The first differences of
3) are trivial. No tuning parameter of the kernel function hage original series are studied, which is stationary at the 5%
to be chosen in step 2) and no refining is needed in step @vel according to the augmented Dickey—Fuller test. Using the
The model evidencé’(D|H;) can be used in step 4) to ranksame inputs as in [8], the input vector is constructed using past
different kernel types. The model evidence can also be usecsservations with lags from 1 to 6. The time series model was
rank models with different input sets, in order to select the masgnstructed assuming a constant volatility.

appropriate inputs. The first 1670 observations (1957—1988) were used to infer
the optimal hyperparametefsy;p = 0.0057 and (yp; =
B. Design of the LS-SVM Volatility Model ¢vp = 1.23 and the optimal tuning parametef;p = 12 re-

sulting into an effective number of parametetg = 108.88.

The design of the LS-SVM volatility model is similar to theThese hyper- and kernel parameters were kept fixed for the out
design of the time series model. In step 1), the inputs are normgf-sample one step ahead prediction on the 254 observations
ized to zero mean and unit variance [5]. The normalized tralnnag the period 1989-1993. In the first experiment, the model
data are denoted by = {(z;,5:)}L,, wherei; € R", i = parametersuy;p» andby,p were kept fixed (NRo, No Rolling

, IV, are the normalized inputs and where= CMpf € approach, [8]); in the second experiment the Rolling approach
IR are the corresponding outputs, with; »; from (32) of the (Ro) was applied, i.e., reestimating the model parameters
time series modek;. In step 2), one selects the modé} by andb or o andb each time a new observation becomes avail-
choosing a kernel tyij, e.g., an RBF-kernel with parameterable. In Table I, the out of sample prediction performances of
;. For this model, the hyperparameté¢rg » and(y;p are in- the LS-SVM an AutoRegressive model (AR14) with lags at 1,
ferred from the data on the second level as in steps 2(a), 2(b) @d7, and 14 [this is the optimal model structure selected in
2(c) of the time series model. The model ewdeﬁt(é)ﬂ-l )is  [8] using Akaike's information criterion (AIC)]. The perfor-
calculated from (32) in step 3). In step 4), one selects the modeinces of a kernel-based nonparametric conditional mean pre-
H,; with maximal model evidenc&(D|H;). Go to step 2) or dictor (NonPar), with mean squared error cost function (MSE)
step 1) if the performance is insufficient. For an RBF-kernel, orj8], are quoted in the last row of Table I.
may refines; such that a higher model evidence is obtained. Fi- The MSE and corresponding sample standard deviations of
nally, one calculates th/gwm from (37) in step 5). the different models are reported in the first column. The MSE
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TABLE | were used as a validation set. An out of sample test set of 1234

OUT OF SAMPLE TEST SET PERFORMANCES i i i _ ;
OBTAINED ON ONE STEP AHEAD PREDICTION OF THEUS WeEKLY T-BILL points was used, covering the period 23.12.94-10.12.98, which

RATE WITH DIFFERENT MODELS: LS-SVM wiTH RBF-KERNEL includes the Asian crises in 1998.
(RBF-LS-SVM), AN AR(14) MODEL AND THE NONPARAMETRIC MODEL The LS-SVM model was inferred as explained in Section VI.

(NonPar)usING BOTH ROLLING (Ro) AND NONROLLING (NR0) APPROACHES From level 3 inference, we obtained the kernel parameter
FIRST, THE SAMPLE MSE AND CORRESPONDINGSAMPLE STANDARD

DEVIATION ARE REPORTED THEN THE DIRECTIONAL ACCURACY IsAssessep @ = 20. The effective parameters of the LS-SVM model with
BY THE PERCENTAGE OFCORRECTSIGN PREDICTIONS (PCSP),THE weighted error term is,r = 146.4. Predictions were made

PESARAN-TIMMERMAN STATISTIC (PT) AND THE CORRESPONDINGp-VALUE. ; ; ;
THESE p-VALUES ILLUSTRATE THAT THE LS-SVM wWITH RBF-KERNEL using the roliing approach updating the model parameters

(RBF-LS-SVM) QLEARLY PERFORMSBETTER THAN THEOTHER MopeLs  &fter 200 predictions. The performances of the models are

WITH RESPECT TO THEDIRECTIONAL ACCURACY CRITERION compared with respect to the Success Ratio (SR) and the
Pesaran—Timmerman test statistic [18] for directional accuracy
MSE PCSP  PT p-value (PT) with corresponding-value. The market timing ability
RBF-LS-SVM (Ro) |0.172 (0.316) | 62% 3.24 0.0011 of the models was estimated by using the prediction in 2
. : . . 0
RBF-LS-SVM (NRo) | 0.173 (0.318) | 61% 3.10 0.0018 investment strategies assuming a transaction cost of 0.1% (10

bps as in [19]). Investment Strategy 1 (IS1) implements a naive

AR(14) (Ro) 0.183 (0.346) | 56% 1.76 0.0782 allocation of 100% equities or cash, based on the sign of the
AR(14) (NRo) 0.184 (0.347) | 54% 1.23 0.2170 prediction. This strategy will result in many transactions (588
NonPar [8] (Ro) 0.162 - 56% - - for the LS-SVM) and profit will be eroded by the commissi®ns

In Investment Strategy 2 (IS2) one changes the position (100%
cash/0% equities - 0% cash/100% equities) according to the

for a random walk model is 0.186 with sample standard deviglgn Of the prediction only when the absolute value of the
tion (0.339), which indicates that only a small part of the sign&iN@rPe Ratidinip.n+1/74,,» . €XCeeds a threshold, deter-

is explained by the models. The reduction obtained with t#gined on the training set. This strategy reduces the number of
LS-SVM is of the same magnitude as the reduction obtained Bgnsactions (424 for the LS-SVM) changing positions only
applying a nearest neighbor technique on quarterly data [4]. THEEN @ clear trading signal is given. The volatility measure
next columns show that the LS-SVM regressor clearly achieves+1 iN i ».v . IS Predicted by the LS-SVM volatility model

a higher Percentage of Correct Sign Predictions (PCSP). ﬁ?%explalned below._ The cumulative returns ob_talne_d WIT[h the
high values of the Pesaran-Timmerman (PT) statistic for direéiférent models using strategy 1S2 are visualized in Fig. 2.
tional accuracy [18] allow to reject the HO hypothesis of no dd-he annualized return and risk characteristics of the invest-

pendency between predictions and observations at significafe@nt strategy are summarized in Table II. The LS-SVM with
levels below 1%. RBF-kernel has a better out of sample performance than the

ARX and AR model with respect to the Directional Accuracy,
. where the predictive performance of the ARX is mainly due
B. Prediction of the DAX 30 to lagged interest rate values. Also in combination with both
We design the LS-SVM time series model in the evidendﬁvestment Strategies IS1 and IS2, the LS-SVM YIeldS the best
framework to predict the daily closing price return of th@nnualized risk/return ratio (Sharpe Ratio, SR), while strategy
German DAX30 index (Deutscher Aktien Index). Then wéS2 illustrates the use of the uncertainyn the predictions.
use the inferred hyperparameters of the time series model td-inally, we illustrate input pruning for the case of the time
construct the LS-SVM volatility model. The modeled volatilityseries model. This is done by sequentially pruning the inputs
level is then used to refine the LS-SVM model using thef the model comparing the full model evidence with the input
weighted least squares cost function and to calculate the retQfined model evidences. We start from the time series model
Per unit riskjarp.n+1/0g. 4. (Sharpe Ratio [14], [19], [30] with 38 inpyts, Whic_:h yields a PCSP of 57.7% on the validation
neglecting riskfree return) of the prediction. The followinge€t. In the first pruning step, we compare 38 models and remove
inputs were used: lagged returns of closing prices of DAX3t)e input corresponding to the lowest model evidence. After the
Germany 3-Month Middle Rate, US 30-year bond, S&P50(0rst pruning step, the PCSP remained 57.7%. The pruning of
FTSE, CAC40. All inputs were normalized to zero mean arffi€ input corresponding to the highest model evidence would
unit variance [5], while the output was normalized to unif@ve resulted in a significantly lower PCSP of 55.2%. We restart
variance for convenience. We started with a total number of 88w from the first model with 37 inputs and compare again the
inputs for the LS-SVM time series model. The performand&odel evidence with 37 prunded model evidences. The pruning
of the LS-SVM model was compared with the performand@rocess is stopped when the model evidences of the pruned
of an ARX model (ARX10) with 10 inputs and an AR modemodel are lower than the full model of the previous pruning step.
(AR20) of order 20 with lags (1, 3, 4, 9, 17, 20), estimated with
Ordinary Least Squares (OLS)' The inPUtS of the AR and ARX3F0r zero transactions cost, the LS-SVM, ARX10, AR20, and B&H achieves
model were sequentially pruned using AIC, starting from 24hnualized returns (Re) 32.7%, 21.8%, 8.7% and 16.4% with corresponding
|ags and the 38 inputs of the LS-SVM modell respective|y_ Tﬁ@k (Ri) 14.6%, 15.2%, 15.3% and 20.3% resulting in Sharpe Ratios (SR) 2.23,
performances are also compared with a simple Buy-and-Ho‘ I4n c())r.(?;étlcr)uijllSﬁrztzizeucstzzlfyt‘he model uncertainty for the LS-SVM model
strategy (B&H). The training set consists of 600 training datg, Y '

) ’ ) ding on the signa} i p, x+1 /CA;,L/IQ with IS2 yields a SR, Re and Ri of 1.28,
points from 17.04.92 till 17.03.94. The next 200 data points.8 and 14.8, respectively.
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Fig. 2. Cumulative returns using Investment Strategy 2 (1S2) (transaction cost 0.1%) on the test set obtained with: (1) LS-SVM regressor witle|IRBH-ker
line); (2) the ARX model (dashed-dotted); (3) the Buy-and-Hold strategy (dashed) and (4) the AR model (dotted). The LS-SVM regressor yieldstthe highe
annualized return and corresponding Sharpe Ratio as denoted in Table II.

TABLE I
TEST SET PERFORMANCES OF THELS-SVM TIMES SERIES AND VOLATILITY MODEL OBTAINED ON THE ONE STEP AHEAD PREDICTION OF THEDAX30 INDEX.
THE LS-SVM TIME SERIESMODEL WITH RBF-KERNEL 1S COMPARED WITH AN ARX10 AND AR20 MODEL AND A BUY-AND-HOLD (B&H) STRATEGY. THE
RBF-LS-SVM Q.EARLY ACHIEVES A BETTER DIRECTIONAL ACCURACY. IN COMBINATION WITH INVESTMENT STRATEGIESIS1 AND IS2 THE LS-SVM YIELDS
ALSO BETTER ANNUALIZED RETURNS (Re)AND RisksS (Ri) RESULTING IN A HIGHER SHARPE RATIO (SR). IN THE SECOND PART OF THE TABLE, THE LS-SVM
VOLATILITY MODEL 1S COMPARED WITH THREE AR10 MODELS USING DIFFERENT POWER TRANSFORMATIONS A LOG TRANSFORMEDAR10 MODEL AND THE
GARCH(1,1) MopEL. THE RBF-LS-SVM MODEL ACHIEVES BETTER OUT OF SAMPLE TEST SET PERFORMANCES THAN THEOTHER MODELS WITH RESPECT TO
THE MSE, MAE CRITERIA, WHILE A COMPARABLE NEGATIVE LOG LIKELIHOOD (NLL) 1S OBTAINED WITH RESPECT TO THEGARCH MODEL

Time Series Model

Directional Accuracy | Inv. Strat. 1 (IS1) | Inv. Strat. 2 (IS2)

PCSP PT p-value | SR, Re; Ri; | SR, Re; Ri,
LS-SVM 56.8 4.39 1.1e-5| 1.38 20.24 14.62 | 1.49 21.66 14.58
ARX10 55.0 320 0.001| 0.65 9.99 1519|1.03 16.63 16.03
AR20 48.1 -1.27 0.202 | -0.40 -4.75 15.34|0.89 14.84 16.52
B&H - - - | 081 16.35 20.29|0.81 16.35 20.29

Volatility Model
MSE MAE NLL

LS-SVM 0.474 (1.548) 0.461 (0.477) 1.374 (2.563)
|AR10]| 0.490 (1.655) 0.470 (0.492) 1.613 (2.129)
|AR10| 0.485 (1.621) 0.471 (0.486) 1572 (1.892)
{AR10|? 0.489 (1.479) 0.501 (0.474) 1.530 (1.602)
logAR10 0.613 (2.161) 0.497 (0.606) 3.253 (7.931)
GARCH(1,1) 0.480 (1.351) 0516 (0.452) 1.314 (1.059)
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Here, we performed five pruning steps, resulting in no loss witthe hyperparameters of the time series model are inferred
respect to the PCSR on the validation set. One may notice thaim the data on the second level of inference. Since the
the pruning is rather time consuming. An alternative way is telatility is not a directly observed variable of the time series,
start from one input and sequentially add inputs within the ewvihe volatility model is inferred within the evidence framework
dence framework. from past absolute returns and the hyperparameters of the time
The volatility model is inferred as explained in Section \series model related to the volatility inferred in the second
The input vectot: consists of ten lagged absolute returns, whillevel. The volatility forecasts of the volatility model are used
the outputs of the training set are obtained from the LS-SVM combination with the model output uncertainty in order
Time Series Model. The hyperparametgrgr = 2.87 and to generate the error bars in the density prediction. Model
(v p = 4.31 and the kernel parametér= 18 were inferred on comparison is performed on the third level to infer the tuning
the second and third level, respectively, yielding = 8.61. parameter of the RBF-kernel by ranking the evidences of the
The performance of the volatility model was compared on ttfferent models. The design of the LS-SVM regressor within
same targets with a GARCH(1,1) model [1], [6], [23], [30khe evidence framework is validated on the prediction of the
and with three autoregressive models of order &R0, weekly US shortterm T-bill rate and the daily closing prices of
|AR10J*! and|AR10J?) for the absolute returns [9], [13], [17], the DAX30 stock index.
[30] using power transformations, 1.1 and 2, respectively.
Since these models do not guarantee positive outputs, also an APPENDIX A
AR model (log AR10) is estimated on the logarithms of the data EXPRESSIONS FOR THE/ARIANCE o2 AND det H

where the predicted volatility corresponds to the exponennal_l_he expression (16) for the varianed cannot be evalu-
of the output of the log AR10 model. The AR models are - . 7 .
. . . . . ted in its present form, sincg(-) is not explicitly known
estimated using OLS and pruning the inputs according 0 1 .
. . and hence alsa)(x) and H~' are unknown. By defining
AIC, while the power transformation 1.1 was selected from . T .
. . : = [p(z1),...,0(xN)], with @ = TLT, the expressions
power transformation matrix [9], [17] according to AIC. Th ) . . .
or. the block matrices in the Hessian (9) can be written
MSE and mean average error (MAE) test set performances_of . T
. . .as follows: Hy; = pwln . + TDcT , Ho = TDclv and
the five models are reported together with the correspondin N fh i | i NAN
sample standard deviations in Table II. In the last two column@22 = 2_i=1 ¢ = s¢. The diagonal matrbd; € IR IS

the models are compared with respect to the negative | aﬁned as followsD; = diag([¢s, .. -, (v ])-

likelihood (NLL) —log [T P(e;) of the observatione; 1o <[Inf X} [Hll — HpHR HE 0

given the modeled volatility. Although guaranteeing a positive o 0 1 0 H,
output, the log AR10 yields clearly lower performances. The I 01\ !

nonlinear LS-SVM model with RBF-kernel yields a better {;{F 1D (40)

performance than the AR models. Also, all AR models yield
better performances than the GARCH(1,1) model on the MS#th X = Hi»H,,'. By defining G = Y(D; —
and MAE criteria, while vice versa the GARCH(1,1) yields &1/s:)D;1,11D:)Y?, we obtain that

better NLL. This corresponds to the different training criteria

1T
of the different models. The LS-SVM model yields comparable Hi = HiHgy Hyy = plny + G- (41)
results with respect to the GARCH(1,1) model. Notice that the maximum rank @?; — (1/s¢)D¢1,1% D¢, with
dimensionN x N, is equal toN — 1, sincel,, is the eigen-
VIII. CONCLUSION vector corresponding to the zero eigenvalue. Finally (40) be-

mes (42), shown at the bottom of the page.

In financial time series, the deterministic signal is mask . :
expression (16) for the varianeé now becomes

by heteroskedastic noise and density predictions are import
because one wants to know the associated risk, e.g., to make o2 = o(z)"(ul,, + G) 'y(x)

optimal investment decisions. In this paper, the Bayesian 2 - o

evidence framework is combined with least squares support - g‘ﬁ(x) (uln; +G) " TD1,

vector machines (LS-SVMs) for nonlinear regression in order 1 1

to infer nonlinear models of a time series and the corresponding + s + S—glngTT(uInf + @) YD1y

volatility. The time series model was inferred from the past
observations of the time series. On the first level of inferencéhe next step is to express the invergel,,, + G)~' in
a probabilistic framework is related to the LS-SVM regressderms of the mappings(z;), ¢ = 1,...,N using proper-
in which the model parameters are inferred for given hyies of linear algebra. The inverse will be calculated using
perparameters and given kernel functions. Error bars on tie eigenvalue decomposition of the symmetric matrix
prediction are obtained in the defined probabilistic frameworki = G* = PI'DgPi + cP{ P, with P = [P P

(pedny +G) ~(pln, +G) " HizHy)'

H™' = _ _ z -
—Hy Hiy(plo, + G)™ Hyy' + Hy Hiy(pln, + G) " HioHyy'

(42)
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a un

itary matrix and where 0. The matrix P, cor-
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(5]

C. M. Bishop,Neural Networks for Pattern Recognitio®xford Univ.

responds to the eigenspace corresponding to the nonzerg Press.
eigenvalues and the null space is denoted’ylndeed, since

D; —

(1/s¢)D¢ 1,11 D, is a positive semidefinite matrix with

rank N — 1, there are maximallyv — 1 eigenvalues\¢; > 0

and t

heir corresponding eigenvectogs; are a linear combina-

tion of T: ve ; = ca i Tra i, With ¢ ; @ normalization constant

such

solve is the following: Y (D, — 57 D1, 1T D) T g

thath veq = 1L The elgenvalue problem we need to

)\G,ZUG,Z or

Multiplication of the last equation to the left witli” and ap-
plying the Mercer condition yields

T(D< - SC_IDC lU 1%.1D<)TTUG7Z‘ = )\G7ivc7i. (43)

Q(D< -5 1D<1 1 D()QI’G i = Aqi WG (44)

which is a generalized eigenvalue problem of dimensianf

Qisi

nvertible, this corresponds to the eigenvalue problem
(D< - SC_lDC lvlch)Ql/G’i = )\G,il’G,i- (45)

When €2 is not invertible, one can always proceed with the

nonzero eigenvalues of the generalized eigenvalue problerf]

The

remainingn; — Neg dimensional orthonormal null

space P, of G can not be explicitly calculated, but using
the fact that{P, P] is a unitary matrix will allow us to use
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Finally, an expression for d@tl) is given using the eigen-
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