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Abstract—For financial time series, the generation of error
bars on the point prediction is important in order to estimate the
corresponding risk. The Bayesian evidence framework, already
successfully applied to design of multilayer perceptrons, is applied
in this paper to least squares support vector machine (LS-SVM)
regression in order to infer nonlinear models for predicting a time
series and the related volatility. On the first level of inference,
a statistical framework is related to the LS-SVM formulation
which allows to include the time-varying volatility of the market
by an appropriate choice of several hyperparameters. By the use
of equality constraints and a 2-norm, the model parameters of
the LS-SVM are obtained from a linear Karush-Kuhn-Tucker
system in the dual space. Error bars on the model predictions
are obtained by marginalizing over the model parameters. The
hyperparameters of the model are inferred on the second level of
inference. The inferred hyperparameters, related to the volatility,
are used to construct a volatility model within the evidence
framework. Model comparison is performed on the third level
of inference in order to automatically tune the parameters of the
kernel function and to select the relevant inputs. The LS-SVM
formulation allows to derive analytic expressions in the feature
space and practical expressions are obtained in the dual space
replacing the inner product by the related kernel function using
Mercer’s theorem. The one step ahead prediction performances
obtained on the prediction of the weekly 90-day T-bill rate and the
daily DAX30 closing prices show that significant out of sample sign
predictions can be made with respect to the Pesaran-Timmerman
test statistic.

Index Terms—Bayesian inference, financial time series predic-
tion, hyperparameter selection, least squares support vector ma-
chines (LS-SVMs), model comparison, volatility modeling.

I. INTRODUCTION

M OTIVATED by the universal approximation property of
multilayer perceptrons (MLPs), neural networks have

been applied to learn nonlinear relations in financial time series
[3], [12], [19]. The aim of many nonlinear forecasting methods
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[5], [14], [25] is to predict next points of a time series. In fi-
nancial time series the noise is often larger than the underlying
deterministic signal, and one also wants to know the error bars
on the prediction. These density (volatility) predictions give in-
formation on the corresponding risk of the investment and they
will, e.g., influence the trading behavior. A second reason why
density forecasts have become important is that the risk has be-
come a tradable quantity itself in options and other derivatives.
In [15], [16], the Bayesian evidence framework was success-
fully applied to MLPs so as to infer output probabilities and the
amount of regularization.

The practical design of MLPs suffers from drawbacks like the
nonconvex optimization problem and the choice of the number
of hidden units. In support vector machines (SVMs), the re-
gression problem is formulated and represented as a convex
quadratic programming (QP) problem [7], [24], [31], [32]. Ba-
sically, the SVM regressor maps the inputs into a higher dimen-
sional feature space in which a linear regressor is constructed by
minimizing an appropriate cost function. Using Mercer’s the-
orem, the regressor is obtained by solving a finite dimensional
QP problem in the dual space avoiding explicit knowledge of
the high dimensional mapping and using only the related kernel
function. In this paper, we apply the evidence framework to least
squares support vector machines (LS-SVMs) [26], [27], where
one uses equality constraints instead of inequality constraints
and a least squares error term in order to obtain a linear set of
equations in the dual space. This formulation can also be re-
lated to regularization networks [10], [12]. When no bias term
is used in the LS-SVM formulation, as proposed in kernel ridge
regression [20], the expressions in the dual space correspond
to Gaussian Processes [33]. However, the additional insight of
using the feature space has been used in kernel PCA [21], while
the use of equality constraints and the primal-dual interpreta-
tions of LS-SVMs have allowed to make extensions toward re-
current neural networks [28] and nonlinear optimal control [29].

In this paper, the Bayesian evidence framework [15], [16]
is applied to LS-SVM regression [26], [27] in order to esti-
mate nonlinear models for financial time series and the related
volatility. On the first level of inference, a probabilistic frame-
work is related to the LS-SVM regressor inferring the time series
model parameters from the data. Gaussian probability densities
of the predictions are obtained within this probabilistic frame-
work.

The hyperparameters of the time series model, related to the
amount of regularization and the variance of the additive noise,

1045–9227/01$10.00 © 2001 IEEE
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Fig. 1. Illustration of the different steps for the modeling of financial time series using LS-SVMs within the evidence framework. The model parametersw, b,
the hyperparameters�, � and the kernel parameter and relevant inputs of the time series modelH are inferred from the dataD on different levels of inference.
The inferred hyperparameters� are used to estimate the parameters~w, ~b, ~�, ~� and~� of the volatility model ~H. The predicted volatility is used to calculate
error bars� on the point prediction̂y .

are inferred from the data on the second level on inference.
Different hyperparameters for the variance of the additive noise
are estimated, corresponding to the time varying volatility
of financial time series [23]. While volatility was typically
modeled using (Generalized) Autoregressive Conditionally
Heteroskedastic ((G)ARCH) models [1], [6], [30], more
recently alternative models [9], [13], [17] have been proposed
that basically model the observed absolute return. In this paper,
the latter approach is related to the Bayesian estimate of the
volatility on the second level of inference of the time series
model. These volatility estimates are used to infer the volatility
model.

On the third level of inference, the time series model evidence
is estimated in order to select the tuning parameters of the kernel
function and to select the most important set of inputs. In a sim-
ilar way as the inference of the time series model, the volatility
model is constructed using the inferred hyperparameters of the
time series model. A schematic overview of the inference of
the time series and volatility model is depicted in Fig. 1. The
LS-SVM formulation allows to derive analytical expressions in
the feature space for all levels of inference, while practical ex-
pressions are obtained in a second step by using matrix algebra
and the related kernel function.

This paper is organized as follows. The three levels for in-
ferring the parameters of the LS-SVM time series model are
described in Sections II–IV, respectively. The inference of the
volatility model is discussed in Section V. An overview of the
design of the LS-SVM time series and volatility model within
the evidence framework is given in Section VI. Application ex-
amples of the Bayesian LS-SVM framework are discussed in
Section VII.

II. I NFERENCE OF THEMODEL PARAMETERS (LEVEL 1)

A probabilistic framework [15], [16] is related to the
LS-SVM regression formulation [26], [27] by applying Bayes’
rule on the first level of inference. Expressions in the dual space
for the probabilistic interpretation of the prediction are derived.

A. Probabilistic Interpretation of the LS-SVM Formulation

In Support Vector Machines [7], [24], [27], [32] for nonlinear
regression, the data are generated by the nonlinear function

which is assumed to be of the following form

(1)

with model parameters and and where is ad-
ditive noise. For financial time series, the output is typ-
ically a return of an asset or exchange rate, or some measure of
the volatility at the time index. The input vector may
consists of lagged returns, volatility measures and macro-eco-
nomic explanatory variables. The mapping
is a nonlinear function that maps the input vectorinto a higher
(possibly infinite) dimensional feature space . However,
the weight vector and the function are never
calculated explicitly. Instead, Mercer’s theorem

is applied to relate the function with the sym-
metric and positive definite kernel function. For one
typically has the following choices: (linear
SVM); (polynomial SVM of degree
); (SVM with RBF-kernel),

where is a tuning parameter. In the sequel of this paper, we
will focus on the use of an RBF-kernel.
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Given the data points and the hyperparam-
eters and of the model (LS-SVM
with kernel function ), we obtain the model parameters by
maximizing the posterior , . Appli-
cation of Bayes’ rule at the first level of inference [5], [15] gives:

(2)

where the evidence follows from nor-
malization and is independent ofand .

We take the prior independent
of the hyperparameters, i.e., ,

. Both and are assumed to be independent.
The weight parameters are assumed to have a Gaussian
distribution

with zero mean, corresponding to the efficient market hypoth-
esis. A uniform distribution for the prior on is taken, which
can also be approximated as a Gaussian distribution

with . We then obtain the following prior:

(3)

Assuming Gaussian distributed additive noise
( ) with zero mean and variance , the
likelihood can be written as [16]

(4)

Taking the negative logarithm and neglecting all constants,
we obtain that the likelihood (4) corresponds to the error
term . Other distributions with heavier tails like,
e.g., the student-t distribution, are sometimes assumed in the
literature; a Gaussian distribution with time-varying variance

is used here [1], [6], [30] and is recently motivated by
[2]. The corresponding optimization problem corresponds
to taking the 2-norm of the error and results into a linear
Karush-Kuhn-Tucker system in the dual space [20], [26], [27]
while SVM formulations use different norms with inequality
constraints which typically result into a Quadratic Program-
ming Problem [7], [24], [31], [32].

Substituting (3) and (4) into (2) and neglecting all constants,
application of Bayes’ rule yields

Taking the negative logarithm, the maximuma posteriorimodel
parameters and are obtained as the solution to the
following optimization problem:

(5)

with

(6)

(7)

The least squares problem (10), (11) is not explicitly solved in
and . Instead, the linear system (13) inand is solved in

the dual space as explained in the next Subsection.
The posterior can also be

written as the Gaussian distribution

(8)

with and = covar = ,
where the expectation is taken with respect toand . The
covariance matrix is related to the Hessian of the LS-SVM
cost function

(9)

B. Moderated Output of the LS-SVM Regressor

The uncertainty on the estimated model parameters results
into an additional uncertainty for the one step ahead predic-
tion = + , where the input vector

may be composed of lagged returns, and of
other explanatory variables available at the time index. By
marginalizing over the nuisance parametersand [16] one
obtains that the prediction is Gaussian distributed with
mean = = + and variance
= + . The first term corresponds to the volatility
at the next time step and has to be predicted by volatility model.
In Section V we discuss the inference of an LS-SVM volatility
model to predict = . The second term is due
to the Gaussian uncertainty on the estimated model parameters

and in the linear transform .
1) Expression for : Taking the expectation with respect

to the Gaussian distribution over the model parametersand
the mean is obtained
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In order to obtain a practical expression in the dual space, one
solves the following optimization problem corresponding to (5):

(10)

s.t. (11)

To solve the minimization problem (10), (11), one constructs the
Lagrangian

where are the Lagrange multipliers (also called support
values). The conditions for optimality are given by

(12)

with . Eliminating and , one
obtains the following linear Karush–Kuhn–Tucker system in
and [26], [27]

(13)

with1 , , ,
and diag . Mercer’s

theorem [7], [24], [32] is applied within the matrix

(14)

The LS-SVM regressor is then obtained as

(15)

Efficient algorithms for solving large scale systems such as e.g.,
the Hestenes-Stiefel conjugate gradient algorithm from numer-
ical linear algebra can be applied to solve (13) by reformulating
it into two linear systems with positive definite data matrices
[27]. Also observe that Interior Point methods for solving the
QP problem related to SVM regression solve a linear system of
the same form as (13) in each iteration step. Although the effec-
tive number of parameters are controlled by the regulariza-
tion term, the sparseness property of standard SVMs [11] is lost

1The Matlab notation[X ;X ] is used, where[X ;X ] = [X X ] . The
diagonal matrixD = diag(a) 2 IR has diagonal elementsD (i; i) =
a(i), i = 1; . . . ; N , with a 2 IR .

by taking the 2-norm. However, sparseness can be obtained by
sequentially pruning the support value spectrum [27].

2) Expression for : Since is a linear transformation of
the Gaussian distributed model parametersand , the variance

in the feature space is given by

(16)

with . The computation for can be obtained
without explicit knowledge of the mapping . Using matrix
algebra and replacing inner products by the related kernel func-
tion, the expression for in the dual space is derived in Ap-
pendix A:

(17)

with and the
scalar . The vector and the
matrices and are
defined as follows: , ;

, and
diag , where and are the

solution to the eigenvalue problem (45)

(18)

The number of nonzero eigenvalues is denoted by .
The matrix diag is a diagonal
matrix with diagonal elements .

III. I NFERENCE OF THEHYPERPARAMETERS(LEVEL 2)

In this Section, Bayes’ rule is applied on the second level of
inference [15], [16] in order to infer the hyperparametersand

. Whereas it is well-known that the Bayesian estimate of the
variance is biased, this problem is mainly due to the marginal-
ization (see also (31) in this Section). The cost function related
to the Bayesian inference of the hyperparameters is derived first.
We then discuss the inference ofand
and the inference of nonconstant.
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A. Cost Function for Inferring the Hyperparameters

The hyperparameters and are inferred
from the data by applying Bayes’ rule on the second level

(19)

where a flat, noninformative prior is assumed on the hyperpa-
rameters and . The probability is
equal to the evidence in (2) of the previous level. By substitution
of (3), (4) and (8) into (19), one obtains

det

det
(20)

Using the expression for det from Appendix A and taking the
negative logarithm, we find the maximuma posterioriestimates

and by minimizing the level 2 cost function:

(21)

This is an optimization problem in unknowns and may
require long computations. Therefore, we will first discuss the
inference in the case of constant . This value for the
hyperparameters will then be used to infer the nonconstant.

B. Inferring and

We will now further discuss the inference of the hyperpa-
rameters for the special case of constant . In this case,
one can observe that the eigenvalues in (18) are equal to

, where the eigenvalues are obtained from
the eigenvalue problem

(22)

with the identity matrix and with the corre-
sponding diagonal matrix diag =

. The eigenvalue problem (22) is now independent2

from the hyperparameter. By defining
and by using , the level 2 optimization problem (21)
becomes

(23)

The gradients of toward and are [15]

(24)

(25)

Since the LS-SVM cost function consists of an error term
with regularization term (ridge regression), the effective
number of parameters [5], [16] is decreased by applying regu-
larization. For the LS-SVM, the effective number of parameters

is equal to

(26)

where the first term is due to the fact that no regularization is
applied on the bias termof the LS-SVM model. Since

, we cannot estimate more effective parameters than the
number of data points , even if the parameterization of the
model has degrees of freedom before one starts
training, with typically .

In the optimum of the level 2 cost function , both
the partial derivatives (24) and (25) are zero. Putting (24) equal
to zero, one obtains , while one
obtains from (25). This
equation corresponds to the unbiased estimate of the variance

within the evidence framework.
These optimal hyperparameters and are obtained

by solving the optimization problem (23) with gradients
(24) and (25). Therefore, one needs the expressions for

and . These terms can
be expressed in the dual variables using the conditions (12) in
the optimum of level 1. The first term is the easiest
to calculate. Using the relation of (12), we obtain

(27)

2Observe that in this case, the eigenvalue problem (22) is related to the eigen-
value problem used in kernel PCA [21]. The corresponding eigenvalues are also
used to derive improved bounds in VC-theory [22]. In the evidence framework,
capacity is controlled by the prior.
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The regularization term is calculated by combining the first
and last condition in (12)

(28)

In the case of constant , the parameters are also constant
.

C. Inferring and

In the previous Subsection, the conditions for optimality of
the level 2 cost function with respect to and
were related to the number of effective parameters. In this
Subsection, we will derive the conditions in the optimum of

with respect to to infer the Bayesian estimate of
the volatility.

The gradient is derived in a similar way as the gra-
dient and is obtained by formally replacing by

in (24). By defining the effective number of parameters as

(29)

a similar relation between and holds in the optimum
of as in Section III-B.

For the gradient , one obtains [starting from the neg-
ative logarithm of (20)]:

Tr

(30)

where

Tr Tr

using (16) and the expression for. In the optimum, the gra-
dient is zero, which yields

(31)

The last equation has to be interpreted as the unbiased estimate
of the variance in the Bayesian framework, as mentioned in the
introduction of this Section. The maximuma posterioriestimate
of the variance is equal to the squared error, corrected
by the relative model output uncertainty .
Since the estimates are essentially only based on one ob-
servation of the time series, these estimates will be rather noisy.

Therefore, we will infer the hyperparameters by as-
suming that we are close to the optimum

(32)

where both and are obtained from the LS-SVM model
with constant . The above assumption corresponds to an
iterative method for training MLPs with constant[15], [16]
but does not guarantee convergence. We did not observe conver-
gence problems in our experiments. The ‘noisy’ estimates will
not be used to infer the LS-SVM time series model with non-
constant hyperparameters . Instead, the estimates
are used to infer the LS-SVM volatility model in Section V.
The modeled of the LS-SVM volatility model are far less
noisy estimates of the corresponding volatility and will be used
to infer the LS-SVM model time series model using a weighted
least squares error term.

IV. M ODEL COMPARISON(LEVEL 3)

In this Section Bayes’ rule is applied to rank the evidence
of different models [15], [16]. For SVMs, different models

correspond to different choices for the kernel function; e.g.,
for an RBF kernel with tuning parameter, the probability of
the corresponding models is calculated in order to select the
tuning parameter with the greatest model evidence. Model
comparison can also be used to select the relevant set of inputs
by ranking the evidence of models inferred with different sets
of inputs. The model selection of the time series model is per-
formed before inferring the , obtained as the outputs of
the volatility model; and therefore we will assume a constant

, in this Section.
By applying Bayes’ rule on the third level, we obtain the pos-

terior for the model :

(33)

At this level, no evidence or normalizing constant is used since
it is impossible to compare all possible models. The prior

over all possible models is assumed to be uniform here.
Hence, (33) becomes . The likelihood

corresponds to the evidence (19) of the previous level.
For the prior , on the positive scale pa-
rameters and , a separable Gaussian with error bars
and is taken. We assume that thesea priori error bars
are the same for all models . To calculate the posterior ap-
proximation analytically, it is assumed [15] that the evidence

can be very well approximated by using
a separable Gaussian with error bars and . As
in Section III, the posterior then becomes [16]

(34)

Ranking of models according to model quality is thus
based on the goodness of the fit (20) and the Occam factor [15],
which punishes for overparameterized models. We refer to [16]
for a discussion on relations between the evidence framework
and other theories of generalization behavior like, e.g., min-
imum description length and VC-theory.

Following a similar reasoning as in [15], [16] approximate
expressions for the errors bars and are obtained
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by differentiating (21) twice with respect toand :
and . One then obtains

(35)

V. VOLATILITY MODELING

Since the volatility is not an observed variable of the time se-
ries , we will use the inferred hyperparameters ,

, from (32) to train the LS-SVM volatility model.
The inverse values correspond to the estimated vari-
ances of the noise on the observations . Instead of mod-
eling and predicting the inferred or directly, we will

model , which corresponds to the prediction of absolute
returns [13], [17], and [30]. Indeed, one can observe that when
the model output uncertainty is small ( ),
then (30) becomes . In this case, the prediction of

corresponds to predicting the absolute values, which
corresponds to the prediction of the absolute returns when the no
time series model is used (see, e.g., [13], [17], [30]). We briefly
discuss the three levels of inference and point out differences
with the inference of the LS-SVM time series model.

The outputs of the LS-SVM volatility model
are the inferred values of the second level

of the time series model, i.e., . The inputs
are determined by the user and may consist of lagged absolute
returns [13], [30] and other explanatory variables. Input pruning
can be performed on the third level as explained in the previous
Section. In a similar way as in Section II, the model parameters

and are inferred from the data by mini-
mizing , with and

, . By introducing the
Lagrange multipliers , the following linear set of equa-
tions is obtained in the dual space:

(36)

with , and ,
where . The matrix has elements

. The expected value of the
LS-SVM volatility model is obtained as

(37)

In a similar way as in Section II-B, one may derive error bars on
the predicted volatility measure . This uncertainty on the
volatility forecasts is not in the scope of this paper.

The hyperparameters and ( ) of the
volatility model correspond to the regularization term and
error term , respectively. Observe that we assume a constant
variance of the noise in the volatility model. The hyperparame-
ters and are obtained by minimizing

(38)

where , and are obtained in a
similar way as in Section III from (27), (28) and (22), respec-
tively. Similar relations as in Section III-B exists, relating the
regularization term and the error term to the effective number
of parameters

of the volatility model .
In a similar way as in Section IV, the probability of different

volatility models can be ranked. This then yields a similar
expression as (39):

(39)

VI. DESIGN OF THEBAYESIAN LS-SVM

We will apply the theory from the previous Sections to the
design of the LS-SVM time series and volatility model within
the evidence framework.

A. Design of the LS-SVM Time Series Model

The design of the LS-SVM time series model consists of the
following steps (see also Fig. 1):

1. The selected inputs are normalized to zero mean and unit
variance [5]. The normalized training data are denoted by

, with the normalized inputs
and the corresponding outputs, transformed to
become stationary.

2. Select the model by choosing a kernel type , e.g,
an RBF-kernel with parameter . For this model, the
hyperparameters and are inferred
from the data on the second level. This is done as follows:

(a) Solve the eigenvalue problem (22) to find the
important eigenvalues and the corresponding
eigenvectors .

(b) Minimize from (23) with respect to
and . The cost function (23) and gradients (24),
(25) are evaluated by using the optimal time series
model parameters and . These are ob-
tained from the first level of inference in the dual
space by solving the linear system (13).
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(c) Calculate the number of effective parameters
defined in (26).

(d) Calculate the volatility estimates with
from (32) (these values will be used to infer the
volatility model ).

3) Calculate the model evidence from (35). For
an RBF-kernel, one may refine such that a higher
model evidence is obtained. This is done by maximizing

with respect to by evaluating the model ev-
idence for the refined kernel parameter starting from step
2(a).

4) Select the model with maximal model evidence
. If the predictive performance is insufficient,

select a different kernel function (step 2) or select a
different set of inputs (step 1).

5) Use the outputs of the volatility model to refine the
time series model. This is done in the following steps:

(a) Solve the eigenvalue problem (18) to find the
important eigenvalues and the corresponding
eigenvectors .

(b) Refine the amount of regularization. This is done
by optimizing in (21) with respect to ,
while keeping . The gradient is
obtained by formally replacing by in
(24). The cost function and the gradient are eval-
uated as in step 2(b) by inferringand in the
dual space on the first level and calculating and

from (27) and (28), respectively.
(c) Calculate the effective number of parameters

from (29).

Notice that for a kernel function without tuning parameter like,
e.g., the polynomial kernel with fixed degree, steps 2) and
3) are trivial. No tuning parameter of the kernel function has
to be chosen in step 2) and no refining is needed in step 3).
The model evidence can be used in step 4) to rank
different kernel types. The model evidence can also be used to
rank models with different input sets, in order to select the most
appropriate inputs.

B. Design of the LS-SVM Volatility Model

The design of the LS-SVM volatility model is similar to the
design of the time series model. In step 1), the inputs are normal-
ized to zero mean and unit variance [5]. The normalized training
data are denoted by , where ,

, are the normalized inputs and where
are the corresponding outputs, with from (32) of the

time series model . In step 2), one selects the model by
choosing a kernel type , e.g., an RBF-kernel with parameter

. For this model, the hyperparameters and are in-
ferred from the data on the second level as in steps 2(a), 2(b) and
2(c) of the time series model. The model evidence is
calculated from (32) in step 3). In step 4), one selects the model

with maximal model evidence . Go to step 2) or
step 1) if the performance is insufficient. For an RBF-kernel, one
may refine such that a higher model evidence is obtained. Fi-
nally, one calculates the from (37) in step 5).

C. Generating Point and Density Predictions

Given the designed LS-SVM time series and volatility model
and , the point prediction and corresponding

error bar are obtained as follows.

1) Let the input of the time series model be normalized in
the same way as the training data. The point prediction

is then obtained as from
(15).

2) Normalize the input of the volatility model in the same
way as the training data . The normalized input is de-
noted by . Predict the volatility measure

from (37). Calculate error bar due to the model
uncertainty from (17). The total uncertainty on the pre-
diction is then .

VII. EXAMPLES

The design of the LS-SVM regressor in the evidence frame-
work is applied to two cases. First, the performance of the
LS-SVM time series model is compared with results from the
literature [4], [8] for the case of one step ahead prediction of
the US short term interest rate. Second, we illustrate the use of
the LS-SVM time series and volatility model for the one step
ahead prediction of the DAX30 index. All simulations were
carried out in Matlab.

A. Prediction of the US Short-Term Interest Rate

The LS-SVM times series model is designed within the
evidence framework for the one step ahead prediction weekly
Friday observations of the 90-day US T-bill rate on secondary
markets from 4 January 1957 to 17 December 1993, which
is the period studied in [4] and [8]. The first differences of
the original series are studied, which is stationary at the 5%
level according to the augmented Dickey–Fuller test. Using the
same inputs as in [8], the input vector is constructed using past
observations with lags from 1 to 6. The time series model was
constructed assuming a constant volatility.

The first 1670 observations (1957–1988) were used to infer
the optimal hyperparameters and

and the optimal tuning parameter re-
sulting into an effective number of parameters .
These hyper- and kernel parameters were kept fixed for the out
of sample one step ahead prediction on the 254 observations
of the period 1989–1993. In the first experiment, the model
parameters and were kept fixed (NRo, No Rolling
approach, [8]); in the second experiment the Rolling approach
(Ro) was applied, i.e., reestimating the model parameters
and or and each time a new observation becomes avail-
able. In Table I, the out of sample prediction performances of
the LS-SVM an AutoRegressive model (AR14) with lags at 1,
4, 7, and 14 [this is the optimal model structure selected in
[8] using Akaike’s information criterion (AIC)]. The perfor-
mances of a kernel-based nonparametric conditional mean pre-
dictor (NonPar), with mean squared error cost function (MSE)
[8], are quoted in the last row of Table I.

The MSE and corresponding sample standard deviations of
the different models are reported in the first column. The MSE
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TABLE I
OUT OF SAMPLE TEST SET PERFORMANCES

OBTAINED ON ONE STEP AHEAD PREDICTION OF THEUS WEEKLY T-BILL

RATE WITH DIFFERENT MODELS: LS-SVM WITH RBF-KERNEL

(RBF-LS-SVM),AN AR(14) MODEL AND THE NONPARAMETRIC MODEL

(NonPar)USING BOTH ROLLING (Ro) AND NONROLLING (NRo) APPROACHES.
FIRST, THE SAMPLE MSE AND CORRESPONDINGSAMPLE STANDARD

DEVIATION ARE REPORTED. THEN THE DIRECTIONAL ACCURACY IS ASSESSED

BY THE PERCENTAGE OFCORRECTSIGN PREDICTIONS (PCSP),THE

PESARAN-TIMMERMAN STATISTIC (PT) AND THE CORRESPONDINGp-VALUE.
THESEp-VALUES ILLUSTRATE THAT THE LS-SVM WITH RBF-KERNEL

(RBF-LS-SVM) CLEARLY PERFORMSBETTER THAN THE OTHER MODELS

WITH RESPECT TO THEDIRECTIONAL ACCURACY CRITERION

for a random walk model is 0.186 with sample standard devia-
tion (0.339), which indicates that only a small part of the signal
is explained by the models. The reduction obtained with the
LS-SVM is of the same magnitude as the reduction obtained by
applying a nearest neighbor technique on quarterly data [4]. The
next columns show that the LS-SVM regressor clearly achieves
a higher Percentage of Correct Sign Predictions (PCSP). The
high values of the Pesaran-Timmerman (PT) statistic for direc-
tional accuracy [18] allow to reject the H0 hypothesis of no de-
pendency between predictions and observations at significance
levels below 1%.

B. Prediction of the DAX 30

We design the LS-SVM time series model in the evidence
framework to predict the daily closing price return of the
German DAX30 index (Deutscher Aktien Index). Then we
use the inferred hyperparameters of the time series model to
construct the LS-SVM volatility model. The modeled volatility
level is then used to refine the LS-SVM model using the
weighted least squares cost function and to calculate the return
per unit risk (Sharpe Ratio [14], [19], [30]
neglecting riskfree return) of the prediction. The following
inputs were used: lagged returns of closing prices of DAX30,
Germany 3-Month Middle Rate, US 30-year bond, S&P500,
FTSE, CAC40. All inputs were normalized to zero mean and
unit variance [5], while the output was normalized to unit
variance for convenience. We started with a total number of 38
inputs for the LS-SVM time series model. The performance
of the LS-SVM model was compared with the performance
of an ARX model (ARX10) with 10 inputs and an AR model
(AR20) of order 20 with lags (1, 3, 4, 9, 17, 20), estimated with
Ordinary Least Squares (OLS). The inputs of the AR and ARX
model were sequentially pruned using AIC, starting from 20
lags and the 38 inputs of the LS-SVM model, respectively. The
performances are also compared with a simple Buy-and-Hold
strategy (B&H). The training set consists of 600 training data
points from 17.04.92 till 17.03.94. The next 200 data points

were used as a validation set. An out of sample test set of 1234
points was used, covering the period 23.12.94–10.12.98, which
includes the Asian crises in 1998.

The LS-SVM model was inferred as explained in Section VI.
From level 3 inference, we obtained the kernel parameter

. The effective parameters of the LS-SVM model with
weighted error term is . Predictions were made
using the rolling approach updating the model parameters
after 200 predictions. The performances of the models are
compared with respect to the Success Ratio (SR) and the
Pesaran–Timmerman test statistic [18] for directional accuracy
(PT) with corresponding -value. The market timing ability
of the models was estimated by using the prediction in 2
investment strategies assuming a transaction cost of 0.1% (10
bps as in [19]). Investment Strategy 1 (IS1) implements a naive
allocation of 100% equities or cash, based on the sign of the
prediction. This strategy will result in many transactions (588
for the LS-SVM) and profit will be eroded by the commissions3

In Investment Strategy 2 (IS2) one changes the position (100%
cash/0% equities - 0% cash/100% equities) according to the
sign of the prediction only when the absolute value of the
Sharpe Ratio exceeds a threshold, deter-
mined on the training set. This strategy reduces the number of
transactions (424 for the LS-SVM) changing positions only
when a clear trading signal is given. The volatility measure

in is predicted by the LS-SVM volatility model
as explained below. The cumulative returns obtained with the
different models using strategy IS2 are visualized in Fig. 2.
The annualized return and risk characteristics of the invest-
ment strategy are summarized in Table II. The LS-SVM with
RBF-kernel has a better out of sample performance than the
ARX and AR model with respect to the Directional Accuracy,
where the predictive performance of the ARX is mainly due
to lagged interest rate values. Also in combination with both
investment strategies IS1 and IS2, the LS-SVM yields the best
annualized risk/return ratio (Sharpe Ratio, SR), while strategy
IS2 illustrates the use of the uncertainty4 on the predictions.

Finally, we illustrate input pruning for the case of the time
series model. This is done by sequentially pruning the inputs
of the model comparing the full model evidence with the input
pruned model evidences. We start from the time series model
with 38 inputs, which yields a PCSP of 57.7% on the validation
set. In the first pruning step, we compare 38 models and remove
the input corresponding to the lowest model evidence. After the
first pruning step, the PCSP remained 57.7%. The pruning of
the input corresponding to the highest model evidence would
have resulted in a significantly lower PCSP of 55.2%. We restart
now from the first model with 37 inputs and compare again the
model evidence with 37 prunded model evidences. The pruning
process is stopped when the model evidences of the pruned
model are lower than the full model of the previous pruning step.

3For zero transactions cost, the LS-SVM, ARX10, AR20, and B&H achieves
annualized returns (Re) 32.7%, 21.8%, 8.7% and 16.4% with corresponding
risk (Ri) 14.6%, 15.2%, 15.3% and 20.3% resulting in Sharpe Ratios (SR) 2.23,
1.44, 0.57 and 0.81, respectively.

4In order to illustrate the use of the model uncertainty for the LS-SVM model,
trading on the signal̂y =^� with IS2 yields a SR, Re and Ri of 1.28,
18.8 and 14.8, respectively.
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Fig. 2. Cumulative returns using Investment Strategy 2 (IS2) (transaction cost 0.1%) on the test set obtained with: (1) LS-SVM regressor with RBF-kernel (full
line); (2) the ARX model (dashed-dotted); (3) the Buy-and-Hold strategy (dashed) and (4) the AR model (dotted). The LS-SVM regressor yields the highest
annualized return and corresponding Sharpe Ratio as denoted in Table II.

TABLE II
TEST SET PERFORMANCES OF THELS-SVM TIMES SERIES ANDVOLATILITY MODEL OBTAINED ON THE ONE STEPAHEAD PREDICTION OF THEDAX30 INDEX.
THE LS-SVM TIME SERIESMODEL WITH RBF-KERNEL IS COMPARED WITH AN ARX10 AND AR20 MODEL AND A BUY-AND-HOLD (B&H) STRATEGY. THE

RBF-LS-SVM CLEARLY ACHIEVES A BETTER DIRECTIONAL ACCURACY. IN COMBINATION WITH INVESTMENT STRATEGIESIS1 AND IS2 THE LS-SVM YIELDS

ALSO BETTER ANNUALIZED RETURNS(Re)AND RISKS (Ri) RESULTING IN A HIGHER SHARPERATIO (SR). IN THE SECOND PART OF THE TABLE, THE LS-SVM
VOLATILITY MODEL IS COMPARED WITH THREE AR10 MODELSUSING DIFFERENTPOWER TRANSFORMATIONS, A LOG TRANSFORMEDAR10 MODEL AND THE

GARCH(1,1) MODEL. THE RBF-LS-SVM MODEL ACHIEVESBETTEROUT OF SAMPLE TESTSET PERFORMANCES THAN THEOTHER MODELS WITH RESPECT TO

THE MSE, MAE CRITERIA, WHILE A COMPARABLE NEGATIVE LOG LIKELIHOOD (NLL) IS OBTAINED WITH RESPECT TO THEGARCH MODEL
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Here, we performed five pruning steps, resulting in no loss with
respect to the PCSR on the validation set. One may notice that
the pruning is rather time consuming. An alternative way is to
start from one input and sequentially add inputs within the evi-
dence framework.

The volatility model is inferred as explained in Section V.
The input vector consists of ten lagged absolute returns, while
the outputs of the training set are obtained from the LS-SVM
Time Series Model. The hyperparameters and

and the kernel parameter were inferred on
the second and third level, respectively, yielding .
The performance of the volatility model was compared on the
same targets with a GARCH(1,1) model [1], [6], [23], [30]
and with three autoregressive models of order ten (AR10 ,
AR10 and AR10 ) for the absolute returns [9], [13], [17],

[30] using power transformations, and 2, respectively.
Since these models do not guarantee positive outputs, also an
AR model (log AR10) is estimated on the logarithms of the data
where the predicted volatility corresponds to the exponential
of the output of the log AR10 model. The AR models are
estimated using OLS and pruning the inputs according to
AIC, while the power transformation 1.1 was selected from a
power transformation matrix [9], [17] according to AIC. The
MSE and mean average error (MAE) test set performances of
the five models are reported together with the corresponding
sample standard deviations in Table II. In the last two columns,
the models are compared with respect to the negative log
likelihood (NLL) of the observation
given the modeled volatility. Although guaranteeing a positive
output, the log AR10 yields clearly lower performances. The
nonlinear LS-SVM model with RBF-kernel yields a better
performance than the AR models. Also, all AR models yield
better performances than the GARCH(1,1) model on the MSE
and MAE criteria, while vice versa the GARCH(1,1) yields a
better NLL. This corresponds to the different training criteria
of the different models. The LS-SVM model yields comparable
results with respect to the GARCH(1,1) model.

VIII. C ONCLUSION

In financial time series, the deterministic signal is masked
by heteroskedastic noise and density predictions are important
because one wants to know the associated risk, e.g., to make
optimal investment decisions. In this paper, the Bayesian
evidence framework is combined with least squares support
vector machines (LS-SVMs) for nonlinear regression in order
to infer nonlinear models of a time series and the corresponding
volatility. The time series model was inferred from the past
observations of the time series. On the first level of inference,
a probabilistic framework is related to the LS-SVM regressor
in which the model parameters are inferred for given hy-
perparameters and given kernel functions. Error bars on the
prediction are obtained in the defined probabilistic framework.

The hyperparameters of the time series model are inferred
from the data on the second level of inference. Since the
volatility is not a directly observed variable of the time series,
the volatility model is inferred within the evidence framework
from past absolute returns and the hyperparameters of the time
series model related to the volatility inferred in the second
level. The volatility forecasts of the volatility model are used
in combination with the model output uncertainty in order
to generate the error bars in the density prediction. Model
comparison is performed on the third level to infer the tuning
parameter of the RBF-kernel by ranking the evidences of the
different models. The design of the LS-SVM regressor within
the evidence framework is validated on the prediction of the
weekly US short term T-bill rate and the daily closing prices of
the DAX30 stock index.

APPENDIX A
EXPRESSIONS FOR THEVARIANCE AND det

The expression (16) for the variance cannot be evalu-
ated in its present form, since is not explicitly known
and hence also and are unknown. By defining

, with , the expressions
for the block matrices in the Hessian (9) can be written
as follows: , and

. The diagonal matrix is
defined as follows diag .

(40)

with . By defining
, we obtain that

(41)

Notice that the maximum rank of , with
dimension , is equal to , since is the eigen-
vector corresponding to the zero eigenvalue. Finally (40) be-
comes (42), shown at the bottom of the page.
The expression (16) for the variance now becomes

The next step is to express the inverse in
terms of the mapping , using proper-
ties of linear algebra. The inverse will be calculated using
the eigenvalue decomposition of the symmetric matrix

, with

(42)
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a unitary matrix and where . The matrix cor-
responds to the eigenspace corresponding to the nonzero
eigenvalues and the null space is denoted by. Indeed, since

is a positive semidefinite matrix with
rank , there are maximally eigenvalues
and their corresponding eigenvectors are a linear combina-
tion of : , with a normalization constant
such that . The eigenvalue problem we need to
solve is the following:

or

(43)

Multiplication of the last equation to the left with and ap-
plying the Mercer condition yields

(44)

which is a generalized eigenvalue problem of dimension. If
is invertible, this corresponds to the eigenvalue problem

(45)

When is not invertible, one can always proceed with the
nonzero eigenvalues of the generalized eigenvalue problem.
The remaining dimensional orthonormal null
space of can not be explicitly calculated, but using
the fact that is a unitary matrix will allow us to use

. This finally yields

(46)

By defining with ,
, the variance can now be calculated by using

Mercer’s theorem and one obtains (17).
Finally, an expression for det is given using the eigen-

values of . The Hessian is nonsingular, mainly because of the
use of a regularization term when . Thus
the inverse exists and we can write det /det . Since
det is not changed the block diagonalizing (40). By combi-
nation with (41), we obtain: det det . Since
the determinant is the product of the eigenvalues, this yields

det (47)
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