Efficient Locally Weighted Polynomial Regression Predictions

Andrew W. Moore
Robotics Institute and
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

awm@cs.cmu.edu

Abstract

Locally weighted polynomial regression
(LWPR) is a popular instance-based al-
gorithm for learning continuous non-linear
mappings. For more than two or three in-
puts and for more than a few thousand dat-
apoints the computational expense of pre-
dictions is daunting. We discuss drawbacks
with previous approaches to dealing with this
problem, and present a new algorithm based
on a multiresolution search of a quickly-
constructible augmented kd-tree. Without
needing to rebuild the tree, we can make
fast predictions with arbitrary local weight-
ing functions, arbitrary kernel widths and
arbitrary queries. The paper begins with
a new, faster, algorithm for exact LWPR
predictions. Next we introduce an approx-
imation that achieves up to a two-orders-
of-magnitude speedup with negligible accu-
racy losses. Increasing a certain approxi-
mation parameter achieves greater speedups
still, but with a correspondingly larger accu-
racy degradation. This is nevertheless useful
during operations such as the early stages of
model selection and locating optima of a fit-
ted surface. We also show how the approx-
imations can permit real-time query-specific
optimization of the kernel width. We con-
clude with a brief discussion of potential ex-
tensions for tractable instance-based learning
on datasets that are too large to fit in a com-
puter’s main memory.

1 Locally Weighted Polynomial
Regression

Locally weighted polynomial regression (LWPR) is
a form of instance-based (a.k.a memory-based) al-

Jeff Schneider
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

schneide@cs.cmu.edu

Kan Deng
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

kdeng@cs.cmu.edu

gorithm for learning continuous non-linear mappings
from real-valued input vectors to real-valued output
vectors. It is particularly appropriate for learning com-
plex highly non-linear functions of up to about 30 in-
puts from noisy data. Popularized in the statistics
literature in the past decades (Cleveland and Delvin,
1988; Grosse, 1989; Atkeson et al., 1997a) it is en-
joying increasing use in applications such as learn-
ing robot dynamics (Moore, 1992; Schaal and Atke-
son, 1994) and learning process models. Both classi-
cal and Bayesian linear regression analysis tools can
be extended to work in the locally weighted frame-
work (Hastie and Tibshirani, 1990), providing confi-
dence intervals on predictions, on gradient estimates
and on noise estimates—all important when a learned
mapping is to be used by a controller (Atkeson et al.,
1997b; Schneider, 1997).

Let us review LWPR. We begin with linear regression
on one input and one output. Global linear regression
(left of Figure 1) finds the line that minimizes the sum
squared residuals. If this is represented as

y(@) = Po + iz (1)
then By and By are found that minimize

N N

Z(@/k — y(ar))® = Z(@/k —Bo — Bixk)? (2)

k=1 k=1

During a locally weighted linear regression prediction,
a query point, Xquery, is supplied. A linear map is con-
structed, but i1t 18 now much more strongly influenced
by datapoints that lie close to the query point accord-
ing to some scaled Euclidean distance metric. This is
achieved by (for this prediction only) weighting each
datapoint according to its distance to the query: a
point very close to the query gets a weight of one and
a point far away gets a weight of zero. A common
weighting function is Gaussian:

wr = weight of datapoint xj

= exp(—Distancez(xk,xquery)/QKz)

Loca line& %

° model from
° - weighted
least squares °
° at query

°
A&u vary

the query, you
Q}Jery get this curve

x<

Figure 1: The left graph shows a global linear regression in progress: the sum of squares of the unweighted residuals is
minimized. The right graph shows a locally weighted linear regression. The weighted sum of squared residuals is
minimized, where the thickness of the lines indicates the strength of the weight.

where the K parameter (called the kernel width or
bandwidth determines how quickly weights decline in
value as one moves away from the query. Then instead
of finding the line parameters 5y and 7 to minimize
the global sum of squared residuals, we minimize the
locally weighted sum of squared residuals:

N

ng(yk — Bo — Brxe)® (3)

i=1
The right side of Figure 1 shows the effect. Near the
query (marked with an X) large residuals are penalized
strongly, but far from the query the penalty is negli-
gible. If the query is moved, then the weights on the
datapoints will change and so a different local linear
map will be found.

Provided one has a strong stomach for matrix manip-
ulation, these ideas can be easily extended to datasets
with many inputs and to local polynomial models in-
stead of linear models. Suppose we wish to estimate a
local multivariate polynomial

g(X) = 61t1(x) + 62t2(x) + ...+ ﬁMtM(X) (4)

around query point, Xquery, Where ¢; is a function that
produces the jth term in your polynomial. For exam-
ple, with two inputs and a quadratic local model we
would have ¢1(x) = 1,t2(x) = 21,%3(x) = 22,%4(x) =
2% t5(x) = 2129, t6(x) = 3. Equation 4 can be writ-
ten more compactly as

y(x) = BT t(x) (5)
where t(x) is the vector of polynomial terms of the
input x: t(x) = (t1(x),?2(x),...ta(x)). The weight
of the kth datapoint is again computed as a decaying
function of Euclidean distance between x; and Xquery-
3 is chosen to minimize

Z wi(yx — BT tx)? (6)

where t; = t(x;). Happily, this minimization requires
no gradient descent, but can be obtained directly by
-1
B=X"X) X'y (7)

where XX is an M x M matrix! and X7y is a M-
row, l-column matrix(remember, M is the number of
terms) defined thus:

(XTX)ij = > witty (xe)t (xx) (8)
(XTy)i =) witi (xu)ys (9)

More succinctly, we may write:

N N
XX = Z wgtktg, XTy = Z wzyktka (10)
k=1 k=1

2 Efficient LWPR predictions

LWPR is a powerful, flexible tool for fitting multivari-
ate noisy data with non-linearities. But the direct im-
plementation of the above algorithm requires that on
every prediction the entire dataset is scanned, weights
are computed for all datapoints, and all datapoints
have their weighted contribution added into the xX'x
and X%y matrices. With N datapoints and M terms,
this means O(N M?) multiplications to build the ma-
trices and then another O(M?3) operations to compute
the B vector. Sometimes the computational expense
isn’t an inconvenience. The devil stick robot of (Schaal
and Atkeson, 1994) was able to make 5 predictions
a second with 10 inputs, b outputs and a thousand

'X itself is an N-row, M-column matrix whose kth row
is wr X (b1(xx)...tm(xx)). X does not need to be con-
structed explicitly.

data points using a DSP board. But in cases such as
graphing, optimizing over the model, and performing
test-set validation of a model, much faster predictions
are desirable. And sometimes N (the number of dat-
apoints) may be much larger than a thousand. What
then?

Previous researchers have provided three kinds of an-
swers to that question. This paper provides a fourth,
described shortly. The first common solution is editing,
in which only a small subset of all the datapoints are
used. This results in an algorithm with rather differ-
ent properties, in which some information about fine
detail is necessarily lost. Another solution is caching,
in which a multivariate spline model is built when the
data is first loaded. (Grosse, 1989) do this with a vari-
able resolution kd-tree structure and multilinear inter-
polation within tree leaves. Unfortunately, continuous
interpolation above two dimensions is very expensive
in computation and memory. (Quinlan, 1993) also uses
a caching method but ignores continuity by storing
separate discontinuous linear maps in the leaves. An-
other downside to caching solutions is that they only
record the fitted surface. The scheme used in this pa-
per retains all the information necessary to do a full
local regression analysis, providing noise estimates and
confidence intervals along with the prediction.

A third solution, and one which does retain informa-
tion, uses a technique called range-searching with kd-
trees (Friedman et al., 1977; Preparata and Shamos,
1985). Tt is possible to arrange data in such a way
that given a query point and a distance, all datapoints
within the given distance of the query are returned
without needing to search the entire dataset. This
works well if there are a small number of dimensions
and the kernel width is small enough that only a tiny
fraction of the datapoints have non-zero weight for a
given query. But with more than a few dimensions, the
savings for uniformly distributed datasets with fewer
than millions of points are disappointing. Much worse,
for many datasets, the best kernel width is very broad,
meaning that a significant fraction of the data (some-
times all the data) has non-zero weight. In that case,
avoiding the zero-weight datapoints is not much help.

In this paper we use the main idea from (Deng and
Moore, 1995) in which a multiresolution data structure
increased the speed of kernel regression (also known as
Locally Weighted Averaging). Here, we extend that
method to arbitrary locally weighted polynomials, and
give a number of empirical evaluations of the resulting
algorithms. We show how an apparently excessive ap-
proximation that further reduces prediction times nev-
ertheless gives good performance. We also investigate
how these fast predictions can permit prediction-time-
optimization of kernel width.

This algorithm builds an enhanced kd-tree from the

data. Imagine there are two inputs and the datapoints
are distributed as in Figure 2 (leftmost figure). Then
the root node of the tree records the bounding box
of all the data (shown as a rectangle). The root has
two children, each of which own half the data and have
their own bounding boxes (next part of Figure 2). And
in turn they have children. This continues recursively
until the leaf nodes, which each contain just one point.

How do we decide which input attribute to split on and
where? Unlike decision trees (Breiman et al., 1984;
Quinlan, 1983) for induction, the sole purpose of the
splits are to increase computational efficiency—not to
alter the inductive bias. We do not believe that the
choice between the numerous kd-tree splitting criteria
1s critical for this purpose, and so we choose the same
“split in the middle of the dimension with the widest
spread” method as (Deng and Moore, 1995).

Let ND be a node in the kd-tree. It records:

Unweighted . .
o XX\ D E7°% The matrix summing the un-

weighted data below ND.

U ighted . .
. XTyN%Welg **d. The vector summing the unweighted

data below ND.

e The yTy value for data below the node. This is not
needed for predictions as described above, but s nec-
essary for computing confidence intervals and noise
estimates.

Once the kd-tree is built, we can from then on perform
cheap computation of weighted XTX, XTy, and yTy
for arbitrary queries, arbitrary (monotonically non-
increasing) weighting functions and arbitrary kernel
widths. For brevity consider only XTX. Given query
Xquery , SUpPpose we require the weighted XTX matrix
for all points below node ND.

T~ Weighted Z
kEBELOW(ND)

witgty (11)

The obvious method is to a%l‘]{ tl}11<g gvvo childrenwto comm-
pute their own values XTXLeig(NE) and X7 Ri(;l}i(lfm)

and then sum them. If this is all we did there would,
of course, be no gain in computation speed as a pre-
diction from the root would still add together O(N)
nodes. But sometimes we may be able to cut off a com-
putation at a node. We get our savings if we spot that
all the weights below ND have near-identical weights
given the current query, kernel width and weighting
function. This can happen for three reasons:

o All points below ND are so far from Xquery that
they have zero weight.

e All the points are close together, providing no
room for weight variation.

e The weight function varies negligibly over the re-
gion below ND. For a very wide kernel, a region

. o . o
* e o °2 o . Py
LI o e

Tree Level 1 Tree Level 2

TreeLevel 3

Figure 2: The bounding boxes at increasing depths within the kd-tree.

close to the query may have a constant value of 1,
for example.

Computing the maximum variation of weights over
all points below node ND is easy. We know the lo-
cation of Xquery and we know the bounding hyper-
rectangle of the current node. A simple algorithm cost-
ing O(Number of tree dimensions) can compute the
shortest and largest possible distances to any point
in the node. From these two values, and the assump-
tion that the weight function is non-increasing, we can
compute the minimum and maximum possible weights
Wmin and wyay of any datapoint below node ND.

2.1 Exact LWPR using multiresolution

We now have the tools for a simple tree-cutoff rule.
)) T Weighted)
When computing the weighted X* Xyp matrix,

first compute wmin and wyax. If they are different, re-
cursively call the weighted XTX computation on the
two child nodes and sum the results. If they are iden-
tical, write w = Wmin = Wmax and return

>

k€ BELOW(ND)
k€ BELOW(ND)

Unweighted
= wsz XND

Weighted

trtl

2.2 Approximate LWPR

As we will see the above method can provide large
computational savings whilst computing exactly the
same local linear model as regular LWPR. But now we
will examine how an approximation can further reduce
costs. Suppose we are prepared to sacrifice the original
weighting function for an approximation that never
differs from the original by more than ¢ (Figure 3).

This concession brings tremendous rewards. A sim-
ple implementation could then use the following cutoff
rule:

If wmax — Wmin < 2¢ then simply return

9T ~ Unweighted 1
w? X" Xnp where w = 5(Wnin + Wmax)

because all weights are within +e of w.

This is dangerous. If an LWPR query 1s far away from
any datapoints, then the total sum of weights used in
the prediction may be as small as O(¢) and the above
approximation may make wildly different predictions
than the non-approximate case (especially if thousands
of datapoints that should have a weight of 0 are each
given a weight of O(e)).

This problem is solved by setting e to be a fraction of
the total sum of weights involved in the regression: € =

T ch\le wy, for some small fraction 7. So we would then
like to cutoff if and only if wpnax — Wmin < 27 Ei\;l W
Of course, we don’t know the value of Zi\;l wy, before

we begin the prediction, and computing it would be a
O(N = number of datapoints) operation.

Instead, we estimate a lower bound on ch\le wg. If,
during the computation so far, we have accumulated
sum-of-weights Wsopar, and if there are Nyp data-
points below node ND, and if the minimum weight
below ND is Wiy, then

N
WsoFar + NNDWmin < Z wy (12)
k=1

These tricks are summarized below. We compute an
. . . T ~~ Weighted
approximation to the weighted sum X* Xyp =

24 LT
ZkeBELOW(ND) wityty .

WeightedXtxBelow(ND,Wgopar,7)

1. Compute wpin, and wmax. Retrieve Npyp and

XTXNn 8 for node ND.
2. If (wI‘ﬂaX - wmin) < 27'(VVSOFar + NNDwmin)
3. ThenW' hted U 'rﬁgu@.{n
€l e 2 nweid, e
}(T>(NDg = (%(wmin + wmax)) XTXND 8 .
4. Else

Weighted
(a) X" X .epe(nD) =
WeightedXtxBelow(Left child of ND, Wgopay, 7)
(b) Update Wggpar to include the extra weight added
by the left child.

Weight

(

Distance

Weight

R

D|=ance

Figure 3: Left side: a weighting function. Right side: an approximation to within tolerance e.

Weighted
(c) XTXRight(ND) =

WeightedXtxBelow(Right child of ND, Wggpar, 7)

Weighted

T Weighted

(d) Return XTXLeft(ND) +

T+ Weighted
X" X Right(ND)

Trivial bookkeeping passes the accumulated Wgopar
value around.

3 Details

There are several interesting details which we summa-
rize briefly here.

e To ensure numerical stability of this algorithm,
all attributes must be pre-scaled to a hypercube
centered around the origin.

e The above exposition discussed constructing the
XTX matrix. X’y and y”y are constructed in
exactly the same way.

o If the function being approximated is linear (or
quadratic) in most attributes but nonlinear in a
few, one can perform LWPR in which the dis-
tance metric only contains the attributes that
cause non-linearities. The dimensionality of the
kd-tree is only that of the distance metric, not
the number of attributes.

e The cost of building the tree is O(M?N +
NlogN). Tt can be built lazily, (growing on-
demand as queries occur) and datapoints can be
added in O(M? x tree depth) time, though occa-
sional rebalancing may be needed. The tree oc-
cupies O(M?N) space. Huge memory savings are
possible if nodes with fewer than M datapoints
are not split, but instead retain the datapoints in
a linked list.

e Instead of always searching the left child first it is
advantageous to search the node closest to Xquery
first. This strengthens the Wgopar bound.

e Ball trees (Omohundro, 1991) play a similar role
to a kd-tree used for range searching, but it is
possible that a hierarchy of balls, each containing

the sufficient statistics of datapoints they contain,
could be used beneficially in place of the bounding
boxes we used.

e The algorithms have been modified to permit the
k nearest neighbors of xquery to receive a weight of
1 each no matter how far they are from the query.
The approximate algorithms use an approximate
set of nearest neighbors. This is often useful, but
is not discussed further here and is not used in
the experiments below.

4 Empirical Evaluation

We evaluated five algorithms for comparison.

Regular | Direct computation of X'X as
N 2 T
Zk=1 witrty .

Regzero | Direct computation of XTX with an obvi-
ous and useful tweak. Whenever wy = 0,
don’t bother with the O(M?) operation of
adding wktktg into the sum.

Tree The near-exact tree based algorithm (we set
r=10"").

Approx | The approximate tree-based algorithm with
T = 0.05.

Fast A wildly approximate tree-based algorithm
with 7 = 0.5. This gives an ex-
tremely rough approximation to the weight
function.

Let’s begin with the trivial dataset in Figure 4. Lo-
cal linear regression is applied with a Gaussian weight
function of kernel width 0.48, so that

2

—(l‘k - Xquery)
2 x 0.482

The middle line of Figure 4 is the predicted value, and
the top and bottom lines show the 95% confidence in-
tervals provided by locally weighted regression anal-
ysis. The Tree algorithm was used. The Approx
algorithm gives an indistinguishable graph. The Fast
algorithm gets very similar predictions (Figure 5), but
with noticeable small discontinuities. Could these dis-
continuities cause serious problems for a user trying

(13)

Wy = exXp

Tinear _predi ot

2o

©o 1o 20 =0

Tinear _predi ot

©o 1o 20 =0

Figure 4: Univariate dataset fitted with locally weighted Figure 5: Univariate dataset fitted with locally weighted

linear regression using the TREE algorithm.

linear regression using the FAST algorithm.

i near _or adi ent

o 1o 20 =0

Widih ©.as: FAST 1 cocal _wel ght od 11 noar _gr adi ent
Cor ent worot

>

o <7

o 1o 20 =0

Figure 6: Gradient estimates from the above method.

to estimate derivatives of the surface? Yes, if deriva-
tives are estimated by subtracting close predictions,
but derivatives can also be estimated more accurately
from the B vector identified by the local regression. In
this case the derivative is simply the F; estimate from
Equation 3. The derivatives evaluated the latter way
are shown in Figures 6 and 7.

Next we examine prediction on a non-trivial dataset.
ABALONE (available from UCT repository) has ten
inputs and 4177 datapoints; the task is to predict the
number of rings in a shellfish.

In these experiments we removed a hundred datapoints
at random as a test-set, and examined each algorithm
performing a hundred predictions; all variables were
scaled to [0..1], and a kernel width of 0.03 was used. As
Table 1 shows, the Regular method took almost a sec-
ond per prediction. Regzero saved 20% of that. Tree
reduced Regular’s time by 50%, producing identical
predictions (shown by the identical mean absolute er-
rors of Regular, Regzero, and Tree). The Approx
algorithm gives an eighty-fold saving compared with
Tree, and the Fast algorithm is about three times
faster still. What price do Approx and Fast pay
in terms of predictive accuracy? Compare the stan-
dard error of the dataset (2.65 if the output vari-
able’s mean was always given as the predicted value)
against Tree’s error of 1.65, Approx’s error of 1.67,
and Fast’s error of 1.71. We notice a small but not in-
significant penalty relative to the percentage variance
explained.

The above results are from one run on a testset of
size 100. Are they representative? Table 2 should re-
assure the reader, containing averages and confidence

Figure 7: Gradient estimates from the above method.

intervals from 20 runs with different randomly cho-
sen test-sets. The bottom row shows that the error of
Approx and Fast relative to the Regular algorithm
is confidently estimated as being small.

Let us examine the algorithms applied to a collection
of five UCI-repository datasets and one robot dataset
(described in (Atkeson et al., 1997b)). Figure 8 shows
results in which all datasets had the same local model:
locally weighted linear regression with a kernel width
of 0.03 on the unit-scaled input attributes. Figure 9
shows the results on a variety of different local polyno-
mial models described in the caption. The pattern of
computational savings without serious accuracy penal-
ties is consistent with our earlier experiment.

There is no space to give the results from numerous
other experiments graphing performance against di-
mensionality, dataset size, kernel width, polynomial
type and so forth. A longer technical report is forth-
coming.

4.1 Prediction-time optimization of the
kernel-width

The above LWPR examples all have fixed kernel
widths. There are datasets for which an adaptive
kernel-width (dependent on the current Xquery) are de-
sirable. At this point two issues arise: the statistical
issue of how to evaluate different kernel widths (for
example, by the confidence interval width on the re-
sulting prediction, by an estimate of local variance,
or by an estimate of local data density) and the com-
putational cost of searching for the best kernel width
for our chosen criterion. Here we are interested in the

Regular Regzero Tree Approx Fast
Millisecs per predict to build weighted re- 980 800 460 5.7 1.7
gression matrices
Millisecs to solve matrices 3 3 3 3 3
Multiplications 742000 469000 233000 12000 2810
Mean Abs Error 1.65104 1.65104 1.65104 1.67046 1.71381
Low Quartile Abs Err 0.47 0.47 0.47 0.52 0.62
Hi Quartile Abs Err 2.21 2.21 2.21 2.21 2.17

Table 1: Costs and errors predicting the ABALONE dataset.

[Algorithm: [Regular Regzero Tree Approx Fast |
Millisecs 98.24+ 0.25 81.4+0.33 46.8 £ 0.08 0.60+ 0.016 0.17 £ 0.0036
AbsError Mean 1.5344+ 0.062 1.5344+ 0.062 1.5344+ 0.062 1.536+ 0.061 1.556 £ 0.063
Excess Error Com- | 0£0 0£0 0£0 0.023+ 0.034 0.0316+ 0.032
pared with Regular

Table 2: Millisecs to build the weighted regression matrices, errors, and errors relative to Regular. 95% confidence

intervals are provided based on 20 experiments with 20 testsets.

Expense Error Error
heart. mbl Regular |g42.16 0.27 heart. mbl Regular 0.22
L40: {9} RegZero g 32.95 0.28 A23:{9}-[5] RegZero 0.22
13 inputs Tree 21.23 0.28 13 inputs Tree 0.22
170 dat apoi nts Appr ox 18.93 0.28 170 dat apoi nts Appr ox 0.22
StdError 0.43 Fast 14.12 0.28 StdError 0.43 Fast 0.24
pool . i Regular |g34.65 0.63 pool . i Regular 0.63
L40: {9} RegZero g 33.45 0.63 @60: 999 RegZero 0.63
3 inputs Tree 22.33 0.63 3 inputs Tree 0.63
153 dat apoi nts Appr ox 4,41 0.63 153 dat apoi nts Appr 0x 0.63
StdError 2.2140 Fast 0.80 0.62 StdError 2.2140 Fast 0.62
energy. nof Reguiar 11793 energy. nof Reguiar 6. 12
L40: {9} RegZer o 11.93 E29: {9} RegZer o 6.12
5 inputs Tree 11.93 5 inputs Tree 6.12
2344 dat apoi nts Appr ox 15.15 2344 dat apoi nts Appr ox 6.03
StdError 286.07 Fast 21.60 StdError 286.07 Fast 7.50
abal one. bl Regular 165 abal one. bl Regular 958.90 1.33
L40: {9} RegZero 1.65 L.30: 999900090- RegZero 1.33
10 inputs Tree 1.65 10 inputs Tree 1.33
4077 datapoints Appr ox 1.67 4077 datapoints Appr ox 1.33
StdError 2.66 Fast 1.71 StdError 2.6611 Fast 1.34
pg. ol Regular 1792 pg. ol Regular 1795
L40: {9} RegZero 1.92 L40: 900009090 RegZero 1.95
9 inputs Tree 1.92 9 inputs Tree 1.95
292 dat apoi nts Appr ox 1.92 292 dat apoi nts Appr 0x 1.94
StdError 6.8151 Fast 1.93 StdError 6.8151 Fast 1.92
preast-al . ol Regular 0.03 preast-al . ol Regular 0.0T
L40: {9} RegZero 0.03 A01: 99--99-9- RegZero 0.01
9 inputs Tree 0.03 9 inputs Tree 0.01
599 dat apoi nts Appr 0x 0.03 599 dat apoi nts Appr 0x 0.01
StdError 0.3 Fast 0.02 StdError 0.3 Fast 0.02

Figure 8: Performance on 5 UCI datasets and one robot
dataset. HEART and BREAST are classification problems
approximated here as a regression on an output of 0 or 1.
They threshold their predictions to give a class, and “error”
denotes “fraction of testset misclassified”. For regression
tasks “Error” is “Mean absolute prediction error”. In all
cases, “Std Error” denotes the error produced by the de-
fault rule of “always predict the mean output”. Expense
is “Millisecs per prediction for building the regression ma-
trices”. All tests had a kernel width of 0.03.

Figure 9: Same experiments, but with a variety of LWPR
models (each selected by cross-validation). HEART: ker-
nel regression, with kernel width (KW) = 0.015, ignoring
one input. POOL: Local Weighted (LW) quadratic regres-
sion (thus M = 10), KW=0.06. ENERGY: LW Quadratic
Regression without cross terms. ABALONE: LW Linear
Regression, ignoring one attribute completely and only in-
cluding 5 attributes in the distance metric. MPG: Uses
all attributes but only has three in the distance metric.
BREAST: Only uses a subset of five of the ten available

inputs.

Kernel width 0.03. Locally weighted quadratic

y
2

Figure 10: This dataset has 100 points. 50 points have in-
puts in the range | x |< 0.1, and their outputs are com-
puted as y =sin(60 | x |) + noise. 50 points have inputs in

the range 0.2 <|z|<1 and their outputs are computed as
y =sin(6 | # |) + noise. Noise std dev is 0.07. It is a dataset crafted
to embarrass any fixed-kernel-width method; here you see a local
quadratic polynomial with kernel width = 0.03 fitting the outer data
well but the inner data poorly. The results in the text use 1000 data-
points with 2-d inputs, and the same separation into two classes of 500
each using the same functions as above (with |z| denoting the distance

b
o
@
o
<}
@
=

from & to the origin).

Using Fixed Using Variable Using Variable K-width,
Kernel width K-width Goal Weight 8.0
K-width | Mean || Goal Mean || Algorithm | Mean | Millisecs Per
Error || Weight | Error Error | Predict
0.25000 0.41 64 0.19 Regular 0.104 | 2000
0.12500 0.24 32 0.13 Regzero 0.104 | 1400
0.06250 0.24 16 0.11 Tree 0.104 | 395
0.03125 0.22 8 0.10 Approx 0.103 | 181
0.01562 0.29 4 0.10 Fast 0.107 | 165
0.00781 0.37 2 0.11
0.00391 0.41 1 0.15
0.00195 0.51 0.5 0.51

Table 3: Prediction-time optimization of kernel width. Results explained in the text.

computational issue and so we resort to a very simple
criterion: the local weight.

Figure 10 shows a 1-input dataset for which a variable
kernel width is desirable. In the following experiment
we used a two-input dataset constructed in similar
spirit. When evaluated on a test-set of 100 points we
see that no fixed kernel-width does better than a mean
error of 0.20 (Table 3, first two columns). We chose
the simplest imaginable adaptive kernel-width predic-
tion algorithm: on each top level prediction make
eight inner-loop predictions, with the kernel widths
{272,273,.27%}. Then choose to predict with the
kernel width that produces a weight closest to some
fixed goal weight. For dense data a small kernel width
will thus be chosen and for sparse data the kernel will
be wide. The results are striking. The middle two
columns of Table 3 reveal that for a wide range of
goal-weights a test-set error of 0.10 is achieved. As
the rightmost three columns show, the approximate
methods continue to win computationally. This com-
putational efficiency required the ability of the tree
based methods to cut off computation even with wide
distance metrics.

This experiment can be extended. The search for the

goal weights need not build XTX and X”y until the
goal is found. The search for the best kernel width

could binary chop over log(kernel width).

5 Future work

Enormous datasets. A striking feature of the ap-
proximate algorithms is that they can often complete
locally weighted lookups without ever needing to in-
spect any individual datapoints. Instead the regres-
sion matrices are built up entirely from nodes that
summarize the relevant statistics of all the datapoints
below them. If datapoints exist at the bottom of the
tree without being visited, why put them into main
memory? Instead, rarely visited portions of the tree
can be transferred to disk until they are queried by ex-
tremely local lookups. It is interesting to speculate on
extending this to large databases of billions of records
of numeric information. There too it may be possi-
ble to build a multiresolution structure of records in
which parent records recursively record sets of statis-
tics summarizing their descendants. These may be
used to greatly speed up queries that ask for statis-
tics of clusters of records local to a given query record.
To date we have devised methods for efficiently build-
ing such structures of records, and for maintaining the
top echelons of the tree in main memory.

SVD-trees. As with other uses of kd-trees, a curse of
dimensionality remains. If there are hundreds of input
attributes in a query, then the hopes for cutoffs during
the matrix construction are forlorn: even a hundred
levels into the tree some attributes will not have been
split upon. We are investigating a new data structure
to help combat this problem, called a Singular Value
Decomposition Tree. When the set of datapoints in
a node 1s on a linearly dependent subspace, a linear
transformation is recorded to map child nodes and all
the datapoints to a new lower-dimensional coordinate
system.

Acknowledgements

This work was sponsored by a National Science Foun-
dation Career Award to Andrew Moore. Thanks to
Mary Soon Lee and the reviewers for valuable com-
ments.

References

Atkeson, C. G., Moore, A. W., and Schaal, S. A.
(1997a). Locally Weighted Learning. Al Review,
11:11-73.

Atkeson, C. G., Moore, A. W., and Schaal, S. A.
(1997b). Locally Weighted Learning for Control.
Accepted for publication in Al Review, 11:75-113.

Breiman, L., Friedman, J. H., Olshen, R. A., and
Stone, C. J. (1984). Classification and Regression
Trees. Wadsworth.

Cleveland, W. S. and Delvin, S. J. (1988). Locally
Weighted Regression: An Approach to Regression
Analysis by Local Fitting. Journal of the Ameri-
can Statistical Association, 83(403):596-610.

Deng, K. and Moore, A. W. (1995). Multiresolution
Instance-based Learning. In To appear in proced-
dings of IJCAI-95. Morgan Kaufmann.

Friedman, J. H., Bentley, J. L., and Finkel, R. A.
(1977). An Algorithm for Finding Best Matches

in Logarithmic Expected Time. ACM Trans. on
Mathematical Software, 3(3):209-226.

Grosse, E. (1989). LOESS: Multivariate Smoothing by
Moving Least Squares. In C. K. Chul, L. L.. S. and
Ward, J. D., editors, Approzimation Theory VI.
Academic Press.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized
additive models. Chapman and Hall.

Moore, A. W. (1992). TFast, Robust Adaptive Con-
trol by Learning only Forward Models. In Moody,
J. E., Hanson, S. J., and Lippman, R. P., editors,
Advances in Neural Information Processing Sys-
tems 4. Morgan Kaufmann.

Omohundro, S. M. (1991). Bumptrees for Efficient
Function, Constraint, and Classification Learn-
ing. In Lippmann, R. P., Moody, J. E.; and
Touretzky, D. S., editors, Advances in Neural In-
formation Processing Systems 3. Morgan Kauf-
mann.

Preparata, F. P. and Shamos, M. (1985). Computa-
tional Geometry. Springer-Verlag.

Quinlan, J. R. (1983). Learning Efficient Classification
Procedures and their Application to Chess End
Games. In Michalski, R. S., Carbonell, J. G., and
Mitchell, T. M., editors, Machine Learning—An
Artificial Intelligence Approach (I). Tioga Pub-
lishing Company, Palo Alto.

Quinlan, J. R. (1993). Combining Instance-Based
and Model-Based Learning. In Machine Learn-
wng: Proceedings of the Tenth International Con-
ference.

Schaal, S. and Atkeson, C. (1994). Robot Juggling:
An Implementation of Memory-based Learning.
Control Systems Magazine, 14.

Schneider, J. G. (1997). Exploiting Model Uncertainty
Estimates for Safe Dynamic Control Learning. In
Neural Information Processing Systems 9, 1996.
Morgan Kaufmann.

