
E�cient Locally Weighted Polynomial Regression Predictions

Andrew W� Moore
Robotics Institute and

School of Computer Science
Carnegie Mellon University

Pittsburgh� PA �����
awm�cs�cmu�edu

Je� Schneider
Robotics Institute

Carnegie Mellon University
Pittsburgh� PA �����
schneide�cs�cmu�edu

Kan Deng
Robotics Institute

Carnegie Mellon University
Pittsburgh� PA �����

kdeng�cs�cmu�edu

Abstract

Locally weighted polynomial regression
�LWPR� is a popular instance	based al	
gorithm for learning continuous non	linear
mappings� For more than two or three in	
puts and for more than a few thousand dat	
apoints the computational expense of pre	
dictions is daunting� We discuss drawbacks
with previous approaches to dealing with this
problem� and present a new algorithm based
on a multiresolution search of a quickly	
constructible augmented kd	tree� Without
needing to rebuild the tree� we can make
fast predictions with arbitrary local weight	
ing functions� arbitrary kernel widths and
arbitrary queries� The paper begins with
a new� faster� algorithm for exact LWPR
predictions� Next we introduce an approx	
imation that achieves up to a two	orders	
of	magnitude speedup with negligible accu	
racy losses� Increasing a certain approxi	
mation parameter achieves greater speedups
still� but with a correspondingly larger accu	
racy degradation� This is nevertheless useful
during operations such as the early stages of
model selection and locating optima of a
t	
ted surface� We also show how the approx	
imations can permit real	time query	speci
c
optimization of the kernel width� We con	
clude with a brief discussion of potential ex	
tensions for tractable instance	based learning
on datasets that are too large to
t in a com	
puter�s main memory�

� Locally Weighted Polynomial
Regression

Locally weighted polynomial regression �LWPR� is
a form of instance	based �a�k�a memory	based� al	

gorithm for learning continuous non	linear mappings
from real	valued input vectors to real	valued output
vectors� It is particularly appropriate for learning com	
plex highly non	linear functions of up to about �� in	
puts from noisy data� Popularized in the statistics
literature in the past decades �Cleveland and Delvin�
���� Grosse� ��� Atkeson et al�� ��a� it is en	
joying increasing use in applications such as learn	
ing robot dynamics �Moore� ��� Schaal and Atke	
son� ��� and learning process models� Both classi	
cal and Bayesian linear regression analysis tools can
be extended to work in the locally weighted frame	
work �Hastie and Tibshirani� ���� providing con
	
dence intervals on predictions� on gradient estimates
and on noise estimates�all important when a learned
mapping is to be used by a controller �Atkeson et al��
��b� Schneider� ����

Let us review LWPR� We begin with linear regression
on one input and one output� Global linear regression
�left of Figure ��
nds the line that minimizes the sum
squared residuals� If this is represented as

�y�x� � �� � ��x ���

then �� and �� are found that minimize

NX

k��

�yk � �y�xk��� �
NX

k��

�yk � �� � ��xk�� ���

During a locally weighted linear regression prediction�
a query point� xquery� is supplied� A linear map is con	
structed� but it is now much more strongly in�uenced
by datapoints that lie close to the query point accord	
ing to some scaled Euclidean distance metric� This is
achieved by �for this prediction only� weighting each
datapoint according to its distance to the query� a
point very close to the query gets a weight of one and
a point far away gets a weight of zero� A common
weighting function is Gaussian�

wk � weight of datapoint xk
� exp��Distance��xk�xquery���K��

Query

Local linear
model from

As you vary
the query, you
get this curve

weighted
least squares
at query

Figure �� The left graph shows a global linear regression in progress� the sum of squares of the unweighted residuals is
minimized� The right graph shows a locally weighted linear regression� The weighted sum of squared residuals is

minimized� where the thickness of the lines indicates the strength of the weight�

where the K parameter �called the kernel width or
bandwidth determines how quickly weights decline in
value as one moves away from the query� Then instead
of
nding the line parameters �� and �� to minimize
the global sum of squared residuals� we minimize the
locally weighted sum of squared residuals�

NX

i��

w�
k�yk � �� � ��xk�� ���

The right side of Figure � shows the e�ect� Near the
query �marked with an X� large residuals are penalized
strongly� but far from the query the penalty is negli	
gible� If the query is moved� then the weights on the
datapoints will change and so a di�erent local linear
map will be found�

Provided one has a strong stomach for matrix manip	
ulation� these ideas can be easily extended to datasets
with many inputs and to local polynomial models in	
stead of linear models� Suppose we wish to estimate a
local multivariate polynomial

�y�x� � ��t��x� � ��t��x� � � � �� �M tM �x� ���

around query point� xquery� where tj is a function that
produces the jth term in your polynomial� For exam	
ple� with two inputs and a quadratic local model we
would have t��x� � �� t��x� � x�� t��x� � x�� t��x� �
x��� t��x� � x�x�� t��x� � x��� Equation � can be writ	
ten more compactly as

�y�x� � �T t�x� ���

where t�x� is the vector of polynomial terms of the
input x� t�x� � �t��x�� t��x�� ���tM�x��� The weight
of the kth datapoint is again computed as a decaying
function of Euclidean distance between xk and xquery�
� is chosen to minimize

NX

i��

w�
k�yk � �

T tk�� ���

where tk � t�xk�� Happily� this minimization requires
no gradient descent� but can be obtained directly by

� � �XTX�
��
XTy ���

where XTX is an M �M matrix� and XTy is a M 	
row� �	column matrix�remember� M is the number of
terms� de
ned thus�

�XTX�ij �
NX

k��

w�
kti�xk�tj�xk� ���

�XTy�i �
NX

k��

w�
kti�xk�yi ��

More succinctly� we may write�

XTX �
NX

k��

w�
ktkt

T
k �X

Ty �
NX

k��

w�
kyktk� ����

� E�cient LWPR predictions

LWPR is a powerful� �exible tool for
tting multivari	
ate noisy data with non	linearities� But the direct im	
plementation of the above algorithm requires that on
every prediction the entire dataset is scanned� weights
are computed for all datapoints� and all datapoints
have their weighted contribution added into the XTX

and XTy matrices� With N datapoints and M terms�
this means O�NM�� multiplications to build the ma	
trices and then another O�M�� operations to compute
the � vector� Sometimes the computational expense
isn�t an inconvenience� The devil stick robot of �Schaal
and Atkeson� ��� was able to make � predictions
a second with �� inputs� � outputs and a thousand

�X itself is an N �row�M �column matrix whose kth row
is wk � �t��xk� � � � tM �xk��� X does not need to be con�
structed explicitly�

data points using a DSP board� But in cases such as
graphing� optimizing over the model� and performing
test	set validation of a model� much faster predictions
are desirable� And sometimes N �the number of dat	
apoints� may be much larger than a thousand� What
then�

Previous researchers have provided three kinds of an	
swers to that question� This paper provides a fourth�
described shortly� The
rst common solution is editing�
in which only a small subset of all the datapoints are
used� This results in an algorithm with rather di�er	
ent properties� in which some information about
ne
detail is necessarily lost� Another solution is caching�
in which a multivariate spline model is built when the
data is
rst loaded� �Grosse� ��� do this with a vari	
able resolution kd	tree structure and multilinear inter	
polation within tree leaves� Unfortunately� continuous
interpolation above two dimensions is very expensive
in computation and memory� �Quinlan� ��� also uses
a caching method but ignores continuity by storing
separate discontinuous linear maps in the leaves� An	
other downside to caching solutions is that they only
record the
tted surface� The scheme used in this pa	
per retains all the information necessary to do a full
local regression analysis� providing noise estimates and
con
dence intervals along with the prediction�

A third solution� and one which does retain informa	
tion� uses a technique called range�searching with kd�
trees �Friedman et al�� ���� Preparata and Shamos�
����� It is possible to arrange data in such a way
that given a query point and a distance� all datapoints
within the given distance of the query are returned
without needing to search the entire dataset� This
works well if there are a small number of dimensions
and the kernel width is small enough that only a tiny
fraction of the datapoints have non	zero weight for a
given query� But with more than a few dimensions� the
savings for uniformly distributed datasets with fewer
than millions of points are disappointing� Much worse�
for many datasets� the best kernel width is very broad�
meaning that a signi
cant fraction of the data �some	
times all the data� has non	zero weight� In that case�
avoiding the zero	weight datapoints is not much help�

In this paper we use the main idea from �Deng and
Moore� ��� in which a multiresolution data structure
increased the speed of kernel regression �also known as
Locally Weighted Averaging�� Here� we extend that
method to arbitrary locally weighted polynomials� and
give a number of empirical evaluations of the resulting
algorithms� We show how an apparently excessive ap	
proximation that further reduces prediction times nev	
ertheless gives good performance� We also investigate
how these fast predictions can permit prediction	time	
optimization of kernel width�

This algorithm builds an enhanced kd	tree from the

data� Imagine there are two inputs and the datapoints
are distributed as in Figure � �leftmost
gure�� Then
the root node of the tree records the bounding box
of all the data �shown as a rectangle�� The root has
two children� each of which own half the data and have
their own bounding boxes �next part of Figure ��� And
in turn they have children� This continues recursively
until the leaf nodes� which each contain just one point�

How do we decide which input attribute to split on and
where� Unlike decision trees �Breiman et al�� ����
Quinlan� ���� for induction� the sole purpose of the
splits are to increase computational e�ciency�not to
alter the inductive bias� We do not believe that the
choice between the numerous kd	tree splitting criteria
is critical for this purpose� and so we choose the same
�split in the middle of the dimension with the widest
spread� method as �Deng and Moore� ����

Let ND be a node in the kd	tree� It records�

� XTX
Unweighted
ND � The matrix summing the un�

weighted data below ND�

� XT y
Unweighted
ND � The vector summing the unweighted

data below ND�

� The yTy value for data below the node� This is not
needed for predictions as described above� but is nec�
essary for computing con�dence intervals and noise
estimates�

Once the kd	tree is built� we can from then on perform
cheap computation of weighted XTX� XTy� and yTy
for arbitrary queries� arbitrary �monotonically non	
increasing� weighting functions and arbitrary kernel

widths� For brevity consider only XTX� Given query
xquery� suppose we require the weighted XTX matrix
for all points below node ND�

XTX
Weighted

ND �
X

k�BELOW�ND�

w�
ktkt

T
k ����

The obvious method is to ask the two children to com	

pute their own values XTX
Weighted

Left�ND	 and XTX
Weighted

Right�ND	

and then sum them� If this is all we did there would�
of course� be no gain in computation speed as a pre	
diction from the root would still add together O�N �
nodes� But sometimes we may be able to cut o� a com	
putation at a node� We get our savings if we spot that
all the weights below ND have near	identical weights
given the current query� kernel width and weighting
function� This can happen for three reasons�

� All points below ND are so far from xquery that
they have zero weight�

� All the points are close together� providing no
room for weight variation�

� The weight function varies negligibly over the re	
gion below ND� For a very wide kernel� a region

.

Tree Level 1 Tree Level 2 Tree Level 3 Tree Level n

Figure �� The bounding boxes at increasing depths within the kd�tree�

close to the query may have a constant value of ��
for example�

Computing the maximum variation of weights over
all points below node ND is easy� We know the lo	
cation of xquery and we know the bounding hyper	
rectangle of the current node� A simple algorithmcost	
ing O�Number of tree dimensions� can compute the
shortest and largest possible distances to any point
in the node� From these two values� and the assump	
tion that the weight function is non	increasing� we can
compute the minimum and maximum possible weights
wmin and wmax of any datapoint below node ND�

��� Exact LWPR using multiresolution

We now have the tools for a simple tree	cuto� rule�

When computing the weighted XTX
Weighted

ND matrix�

rst compute wmin and wmax� If they are di�erent� re	
cursively call the weighted XTX computation on the
two child nodes and sum the results� If they are iden	
tical� write w � wmin � wmax and return

XTX
Weighted

ND �
X

k�BELOW�ND�

w�
ktkt

T
k

� w�
X

k�BELOW�ND�

tkt
T
k

� w�XTX
Unweighted

ND

��� Approximate LWPR

As we will see the above method can provide large
computational savings whilst computing exactly the
same local linear model as regular LWPR� But now we
will examine how an approximation can further reduce
costs� Suppose we are prepared to sacri
ce the original
weighting function for an approximation that never
di�ers from the original by more than � �Figure ���

This concession brings tremendous rewards� A sim	
ple implementation could then use the following cuto�
rule�

If wmax � wmin � �� then simply return

w�XTX
Unweighted

ND where w � �
��wmin �wmax�

because all weights are within �� of w�

This is dangerous� If an LWPR query is far away from
any datapoints� then the total sum of weights used in
the prediction may be as small as O��� and the above
approximation may make wildly di�erent predictions
than the non	approximate case �especially if thousands
of datapoints that should have a weight of � are each
given a weight of O�����

This problem is solved by setting � to be a fraction of
the total sum of weights involved in the regression� � �

�
PN

k��wk for some small fraction � � So we would then

like to cuto� if and only if wmax�wmin � ��
PN

k��wk�

Of course� we don�t know the value of
PN

k�� wk before
we begin the prediction� and computing it would be a
O�N � number of datapoints� operation�

Instead� we estimate a lower bound on
PN

k��wk� If�
during the computation so far� we have accumulated
sum	of	weights WSoFar� and if there are NND data	
points below node ND� and if the minimum weight
below ND is wmin� then

WSoFar �NNDwmin �

NX

k��

wk ����

These tricks are summarized below� We compute an

approximation to the weighted sum XTX
Weighted

ND �P
k�BELOW�ND� w

�
ktkt

T
k �

WeightedXtxBelow�ND�WSoFar���

�� Compute wmin and wmax� Retrieve NND and

XTX
Unweighted
ND for node ND�

�� If �wmax � wmin� � ���WSoFar 	NNDwmin�

� Then return
XTX

Weighted
ND � � �

�
�wmin 	 wmax��

�
XTX

Unweighted
ND �

�� Else

�a� XTX
Weighted
Left�ND	 �

WeightedXtxBelow�Left child of ND�WSoFar� ��

�b� UpdateWSoFar to include the extra weight added
by the left child�

Weight

Distance

Weight

Distance

ε

Figure
� Left side� a weighting function� Right side� an approximation to within tolerance ��

�c� XTX
Weighted
Right�ND	 �

WeightedXtxBelow�Right child of ND�WSoFar� ��

�d� Return XTX
Weighted
ND � XTX

Weighted
Left�ND	 	

XTX
Weighted
Right�ND	

Trivial bookkeeping passes the accumulated WSoFar

value around�

� Details

There are several interesting details which we summa	
rize brie�y here�

� To ensure numerical stability of this algorithm�
all attributes must be pre	scaled to a hypercube
centered around the origin�

� The above exposition discussed constructing the
XTX matrix� XTy and yTy are constructed in
exactly the same way�

� If the function being approximated is linear �or
quadratic� in most attributes but nonlinear in a
few� one can perform LWPR in which the dis	
tance metric only contains the attributes that
cause non	linearities� The dimensionality of the
kd	tree is only that of the distance metric� not
the number of attributes�

� The cost of building the tree is O�M�N �
N logN �� It can be built lazily� �growing on	
demand as queries occur� and datapoints can be
added in O�M� � tree depth� time� though occa	
sional rebalancing may be needed� The tree oc	
cupies O�M�N � space� Huge memory savings are
possible if nodes with fewer than M datapoints
are not split� but instead retain the datapoints in
a linked list�

� Instead of always searching the left child
rst it is
advantageous to search the node closest to xquery

rst� This strengthens the WSoFar bound�

� Ball trees �Omohundro� ��� play a similar role
to a kd	tree used for range searching� but it is
possible that a hierarchy of balls� each containing

the su�cient statistics of datapoints they contain�
could be used bene
cially in place of the bounding
boxes we used�

� The algorithms have been modi
ed to permit the
k nearest neighbors of xquery to receive a weight of
� each no matter how far they are from the query�
The approximate algorithms use an approximate
set of nearest neighbors� This is often useful� but
is not discussed further here and is not used in
the experiments below�

� Empirical Evaluation

We evaluated
ve algorithms for comparison�

Regular Direct computation of XTX asP
N

k��
w�

ktkt
T

k �

Regzero Direct computation of XTX with an obvi�
ous and useful tweak� Whenever wk � �
don�t bother with the O�M�� operation of
adding wktkt

T

k into the sum�
Tree The near�exact tree based algorithm �we set

� � �����
Approx The approximate tree�based algorithm with

� � ���
Fast A wildly approximate tree�based algorithm

with � � ��� This gives an ex�
tremely rough approximation to the weight
function�

Let�s begin with the trivial dataset in Figure �� Lo	
cal linear regression is applied with a Gaussian weight
function of kernel width ����� so that

wk � exp
��xk � xquery��

�� �����
����

The middle line of Figure � is the predicted value� and
the top and bottom lines show the �� con
dence in	
tervals provided by locally weighted regression anal	
ysis� The Tree algorithm was used� The Approx
algorithm gives an indistinguishable graph� The Fast
algorithm gets very similar predictions �Figure ��� but
with noticeable small discontinuities� Could these dis	
continuities cause serious problems for a user trying

y

30

20

10

0

-10

x

3020100

K-width 0.48; TREE local weighted linear predict.

Figure �� Univariate dataset �tted with locally weighted
linear regression using the TREE algorithm�

y

40

30

20

10

0

-10

x

3020100

K-width 0.48; FAST local weighted linear predict.

Figure �� Univariate dataset �tted with locally weighted
linear regression using the FAST algorithm�

y (gradient w.r.t. x)

6

4

2

0

-2

-4

x

3020100

K-width 0.48; TREE local weighted linear gradient.

Figure �� Gradient estimates from the above method�

y (gradient w.r.t. x)

6

4

2

0

-2

-4

x

3020100

K-width 0.48; FAST local weighted linear gradient.

Figure �� Gradient estimates from the above method�

to estimate derivatives of the surface� Yes� if deriva	
tives are estimated by subtracting close predictions�
but derivatives can also be estimated more accurately
from the � vector identi
ed by the local regression� In
this case the derivative is simply the �� estimate from
Equation �� The derivatives evaluated the latter way
are shown in Figures � and ��

Next we examine prediction on a non	trivial dataset�
ABALONE �available from UCI repository� has ten
inputs and ���� datapoints� the task is to predict the
number of rings in a shell
sh�

In these experiments we removed a hundred datapoints
at random as a test	set� and examined each algorithm
performing a hundred predictions� all variables were
scaled to ����� � and a kernel width of ���� was used� As
Table � shows� the Regularmethod took almost a sec	
ond per prediction� Regzero saved ��� of that� Tree
reduced Regular�s time by ���� producing identical
predictions �shown by the identical mean absolute er	
rors of Regular� Regzero� and Tree�� The Approx
algorithm gives an eighty	fold saving compared with
Tree� and the Fast algorithm is about three times
faster still� What price do Approx and Fast pay
in terms of predictive accuracy� Compare the stan	
dard error of the dataset ����� if the output vari	
able�s mean was always given as the predicted value�
against Tree�s error of ����� Approx�s error of �����
and Fast�s error of ����� We notice a small but not in	
signi
cant penalty relative to the percentage variance
explained�

The above results are from one run on a testset of
size ���� Are they representative� Table � should re	
assure the reader� containing averages and con
dence

intervals from �� runs with di�erent randomly cho	
sen test	sets� The bottom row shows that the error of
Approx and Fast relative to the Regular algorithm
is con
dently estimated as being small�

Let us examine the algorithms applied to a collection
of
ve UCI	repository datasets and one robot dataset
�described in �Atkeson et al�� ��b��� Figure � shows
results in which all datasets had the same local model�
locally weighted linear regression with a kernel width
of ���� on the unit	scaled input attributes� Figure
shows the results on a variety of di�erent local polyno	
mial models described in the caption� The pattern of
computational savings without serious accuracy penal	
ties is consistent with our earlier experiment�

There is no space to give the results from numerous
other experiments graphing performance against di	
mensionality� dataset size� kernel width� polynomial
type and so forth� A longer technical report is forth	
coming�

��� Prediction�time optimization of the
kernel�width

The above LWPR examples all have
xed kernel
widths� There are datasets for which an adaptive
kernel	width �dependent on the current xquery� are de	
sirable� At this point two issues arise� the statistical
issue of how to evaluate di�erent kernel widths �for
example� by the con
dence interval width on the re	
sulting prediction� by an estimate of local variance�
or by an estimate of local data density� and the com	
putational cost of searching for the best kernel width
for our chosen criterion� Here we are interested in the

Regular Regzero Tree Approx Fast

Millisecs per predict to build weighted re

gression matrices

��� ��� ��� �� ��

Millisecs to solve matrices � � � � �
Multiplications ������ ������ ������ ����� ����
Mean Abs Error ������ ������ ������ ������ ������
Low Quartile Abs Err ��� ��� ��� ��� ���
Hi Quartile Abs Err ��� ��� ��� ��� ���

Table �� Costs and errors predicting the ABALONE dataset�

Algorithm� Regular Regzero Tree Approx Fast

Millisecs ����� ���� ����� ���� ����� ���� ����� ����� ����� ������
AbsError Mean ������ ����� ������ ����� ������ ����� ������ ����� ������ �����
Excess Error Com

pared with Regular

�� � �� � �� � ������ ����� ������� �����

Table �� Millisecs to build the weighted regression matrices� errors� and errors relative to Regular� ��� con�dence
intervals are provided based on � experiments with � testsets�

Expense Error

heart.mbl
L40:{9}
13 inputs
170 datapoints
StdError 0.43

Regular 42.16 0.27
RegZero 32.95 0.28
Tree 21.23 0.28
Approx 18.93 0.28
Fast 14.12 0.28

pool.mbl
L40:{9}
3 inputs
153 datapoints
StdError 2.2140

Regular 34.65 0.63
RegZero 33.45 0.63
Tree 22.33 0.63
Approx 4.41 0.63
Fast 0.80 0.62

energy.mbl
L40:{9}
5 inputs
2344 datapoints
StdError 286.07

Regular 535.87 11.93
RegZero 484.30 11.93
Tree 323.37 11.93
Approx 5.11 15.15
Fast 1.10 21.60

abalone.mbl
L40:{9}
10 inputs
4077 datapoints
StdError 2.66

Regular 964.00 1.65
RegZero 806.00 1.65
Tree 469.00 1.65
Approx 5.80 1.67
Fast 1.70 1.71

mpg.mbl
L40:{9}
9 inputs
292 datapoints
StdError 6.8151

Regular 70.10 1.92
RegZero 55.18 1.92
Tree 34.35 1.92
Approx 11.61 1.92
Fast 2.00 1.93

breast-all.mbl
L40:{9}
9 inputs
599 datapoints
StdError 0.3

Regular 143.40 0.03
RegZero 126.18 0.03
Tree 59.88 0.03
Approx 13.82 0.03
Fast 6.21 0.02

Expense Error

heart.mbl
A23:{9}-[5]
13 inputs
170 datapoints
StdError 0.43

Regular 37.86 0.22
RegZero 25.84 0.22
Tree 14.32 0.22
Approx 13.42 0.22
Fast 0.50 0.24

pool.mbl
Q50:999
3 inputs
153 datapoints
StdError 2.2140

Regular 36.05 0.63
RegZero 35.95 0.63
Tree 25.43 0.63
Approx 8.12 0.63
Fast 1.20 0.62

energy.mbl
E29:{9}
5 inputs
2344 datapoints
StdError 286.07

Regular 546.48 6.12
RegZero 356.12 6.12
Tree 202.29 6.12
Approx 25.53 6.03
Fast 1.60 7.50

abalone.mbl
L30:999900090-
10 inputs
4077 datapoints
StdError 2.6611

Regular 958.90 1.33
RegZero 717.34 1.33
Tree 203.91 1.33
Approx 2.35 1.33
Fast 1.40 1.34

mpg.mbl
L40:900009090
9 inputs
292 datapoints
StdError 6.8151

Regular 66.79 1.95
RegZero 54.18 1.95
Tree 8.41 1.95
Approx 1.70 1.94
Fast 1.20 1.92

breast-all.mbl
A01:99--99-9-
9 inputs
599 datapoints
StdError 0.3

Regular 44.06 0.01
RegZero 43.96 0.01
Tree 2.20 0.01
Approx 2.20 0.01
Fast 0.50 0.02

Figure �� Performance on � UCI datasets and one robot
dataset� HEART and BREAST are classi�cation problems
approximated here as a regression on an output of or ��
They threshold their predictions to give a class� and �error�
denotes �fraction of testset misclassi�ed�� For regression
tasks �Error� is �Mean absolute prediction error�� In all
cases� �Std Error� denotes the error produced by the de�
fault rule of �always predict the mean output�� Expense
is �Millisecs per prediction for building the regression ma�
trices�� All tests had a kernel width of �
�

Figure �� Same experiments� but with a variety of LWPR
models �each selected by cross�validation�� HEART� ker�
nel regression� with kernel width �KW� � ���� ignoring
one input� POOL� Local Weighted �LW� quadratic regres�
sion �thus M � ��� KW���� ENERGY� LW Quadratic
Regression without cross terms� ABALONE� LW Linear
Regression� ignoring one attribute completely and only in�
cluding � attributes in the distance metric� MPG� Uses
all attributes but only has three in the distance metric�
BREAST� Only uses a subset of �ve of the ten available
inputs�

y

2

1

0

-1

-2

x1

10.50-0.5-1

Kernel width 0.03. Locally weighted quadratic.

Figure �� This dataset has � points� � points have in�
puts in the range j x j� ��� and their outputs are com�
puted as y � sin�� j x j� 	 noise� � points have inputs in
the range �� � jxj � � and their outputs are computed as
y � sin�� j x j� 	 noise� Noise std dev is ��� It is a dataset crafted
to embarrass any �xed�kernel�width method� here you see a local
quadratic polynomial with kernel width � �
 �tting the outer data
well but the inner data poorly� The results in the text use � data�
points with ��d inputs� and the same separation into two classes of �
each using the same functions as above �with jxj denoting the distance
from x to the origin��

Using Fixed Using Variable Using Variable K	width�
Kernel width K	width Goal Weight ���

K�width Mean Goal Mean Algorithm Mean Millisecs Per
Error Weight Error Error Predict

������� ���� �� ��� Regular ����� ����
������� ���� �� ���� Regzero ����� ����
������� ���� �� ���� Tree ����� ��
������� ���� � ���� Approx ����� ���
������� ��� � ���� Fast ����� ���
������� ���� � ����
������ ���� � ����
������ ���� ��� ����
Table
� Prediction�time optimization of kernel width� Results explained in the text�

computational issue and so we resort to a very simple
criterion� the local weight�

Figure �� shows a �	input dataset for which a variable
kernel width is desirable� In the following experiment
we used a two	input dataset constructed in similar
spirit� When evaluated on a test	set of ��� points we
see that no
xed kernel	width does better than a mean
error of ���� �Table ��
rst two columns�� We chose
the simplest imaginable adaptive kernel	width predic	
tion algorithm� on each top level prediction make
eight inner	loop predictions� with the kernel widths
f���� ���� �����g� Then choose to predict with the
kernel width that produces a weight closest to some

xed goal weight� For dense data a small kernel width
will thus be chosen and for sparse data the kernel will
be wide� The results are striking� The middle two
columns of Table � reveal that for a wide range of
goal	weights a test	set error of ���� is achieved� As
the rightmost three columns show� the approximate
methods continue to win computationally� This com	
putational e�ciency required the ability of the tree
based methods to cut o� computation even with wide
distance metrics�

This experiment can be extended� The search for the
goal weights need not build XTX and XTy until the
goal is found� The search for the best kernel width

could binary chop over log�kernel width��

� Future work

Enormous datasets� A striking feature of the ap	
proximate algorithms is that they can often complete
locally weighted lookups without ever needing to in	
spect any individual datapoints� Instead the regres	
sion matrices are built up entirely from nodes that
summarize the relevant statistics of all the datapoints
below them� If datapoints exist at the bottom of the
tree without being visited� why put them into main
memory� Instead� rarely visited portions of the tree
can be transferred to disk until they are queried by ex	
tremely local lookups� It is interesting to speculate on
extending this to large databases of billions of records
of numeric information� There too it may be possi	
ble to build a multiresolution structure of records in
which parent records recursively record sets of statis	
tics summarizing their descendants� These may be
used to greatly speed up queries that ask for statis	
tics of clusters of records local to a given query record�
To date we have devised methods for e�ciently build	
ing such structures of records� and for maintaining the
top echelons of the tree in main memory�

SVD�trees� As with other uses of kd	trees� a curse of
dimensionality remains� If there are hundreds of input
attributes in a query� then the hopes for cuto�s during
the matrix construction are forlorn� even a hundred
levels into the tree some attributes will not have been
split upon� We are investigating a new data structure
to help combat this problem� called a Singular Value
Decomposition Tree� When the set of datapoints in
a node is on a linearly dependent subspace� a linear
transformation is recorded to map child nodes and all
the datapoints to a new lower	dimensional coordinate
system�

Acknowledgements

This work was sponsored by a National Science Foun	
dation Career Award to Andrew Moore� Thanks to
Mary Soon Lee and the reviewers for valuable com	
ments�

References

Atkeson� C� G�� Moore� A� W�� and Schaal� S� A�
���a�� Locally Weighted Learning� AI Review�
�����!���

Atkeson� C� G�� Moore� A� W�� and Schaal� S� A�
���b�� Locally Weighted Learning for Control�
Accepted for publication in AI Review� �����!����

Breiman� L�� Friedman� J� H�� Olshen� R� A�� and
Stone� C� J� ������ Classi�cation and Regression
Trees� Wadsworth�

Cleveland� W� S� and Delvin� S� J� ������ Locally
Weighted Regression� An Approach to Regression
Analysis by Local Fitting� Journal of the Ameri�
can Statistical Association� ����������!����

Deng� K� and Moore� A� W� ����� Multiresolution
Instance	based Learning� In To appear in proced�
dings of IJCAI���� Morgan Kaufmann�

Friedman� J� H�� Bentley� J� L�� and Finkel� R� A�
������ An Algorithm for Finding Best Matches
in Logarithmic Expected Time� ACM Trans� on
Mathematical Software� �������!����

Grosse� E� ����� LOESS� Multivariate Smoothing by
Moving Least Squares� In C� K� Chul� L� L� S� and
Ward� J� D�� editors� Approximation Theory VI�
Academic Press�

Hastie� T� J� and Tibshirani� R� J� ����� Generalized
additive models� Chapman and Hall�

Moore� A� W� ����� Fast� Robust Adaptive Con	
trol by Learning only Forward Models� In Moody�
J� E�� Hanson� S� J�� and Lippman� R� P�� editors�
Advances in Neural Information Processing Sys�
tems �� Morgan Kaufmann�

Omohundro� S� M� ����� Bumptrees for E�cient
Function� Constraint� and Classi
cation Learn	
ing� In Lippmann� R� P�� Moody� J� E�� and
Touretzky� D� S�� editors� Advances in Neural In�
formation Processing Systems �� Morgan Kauf	
mann�

Preparata� F� P� and Shamos� M� ������ Computa�
tional Geometry� Springer	Verlag�

Quinlan� J� R� ������ Learning E�cient Classi
cation
Procedures and their Application to Chess End
Games� In Michalski� R� S�� Carbonell� J� G�� and
Mitchell� T� M�� editors� Machine Learning�An
Arti�cial Intelligence Approach �I	� Tioga Pub	
lishing Company� Palo Alto�

Quinlan� J� R� ����� Combining Instance	Based
and Model	Based Learning� In Machine Learn�
ing
 Proceedings of the Tenth International Con�
ference�

Schaal� S� and Atkeson� C� ����� Robot Juggling�
An Implementation of Memory	based Learning�
Control Systems Magazine� ���

Schneider� J� G� ����� Exploiting Model Uncertainty
Estimates for Safe Dynamic Control Learning� In
Neural Information Processing Systems �� ����
Morgan Kaufmann�

