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Today’s outline

1. SVM: A brief overview (FAQ)

2. Simplest SVM: linear classifier for separable data




Part 1

SVM: a brief overview (FAQ)




What is a SVM?

a family of learning algorithm for classification of objects into two
classes (works also for regression)

Input: a training set




Examples of classification tasks (more tomorrow)

Optical character recognition: x is an image, y a character.

Text classification: x is a text, y is a category (topic, spam / non
spam...)




Pattern recognition example




Are there other methods for classification?

Bayesian classifier (based on maximum a posteriori probability)

Fisher linear discriminant




Why is it gaining popularity

Good performance in real-world applications

Computational  efficiency (no local  minimum,  sparse
representation...)
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Why is it so efficient?

Still a research subject

Always try to classify objects with large confidence, which prevent
from overfitting
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What is overfitting?

There is always a trade-off between good classification of the
training set, and good classification of future objects (generalization
performance)
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Overfitting example
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What is Vapnik’s Statistical Learning Theory

The mathematical foundation of SVM

Gives conditions for a learning algorithm to generalize well
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Why is it relevant for bioinformatics?

Classification problems are very common (structure, function,
localization prediction; analysis of microarray data; ...)

Small training sets in high dimension is common




Part 2

Simplest SVM:
Linear SVM for separable
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Framework

We suppose that the object are finite-dimensional real vectors:
X = R"™ and an object is:

X = (331,...,£Cm).
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Vectors and inner product

x2§
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Linear classifier

Hyperplan:
w.X+b=0

Half-space: Half-space:
w.X+b <0 w.X+b >0
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Linearly separable training set
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Which one is the best?
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Vapnik’s answer : LARGEST MARGIN
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How to find the optimal hyperplane?

For a given linear classifier fz; consider the tube defined by the
values —1 and +1 of the decision function:

N W.X+b > +1




23

The width of the tube is 1/||||

Indeed, the points #; and 5 satisfy:

{u_}.fl 1b=0,

w.To +b=1.
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All training points should be on the right side of the
tube

For positive examples (y; = 1) this means:

w.z; +b>1

For negative examples (y; = —1) this means:
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Finding the optimal hyperplane

The optimal hyperplane is defined by the pair (w0, b) which solves the
following problem:

Minimize:

il
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How to find the minimum of a convex function?

If h(uy,...,uy) is a convex and differentiable function of n variable,
then «* is a minimum if and only if:
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How to find the minimum of a convex function with
linear constraints?

Suppose that we want the minimum of h(u) under the constraints:

gz('&,’)ZO, izl,...,N,
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Lagrangian method (ctd.)

For each @ we can look for i, which minimizes L(u,a) (with no
constraint), and note the dual function:

L(a) = min L(4, &).
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Application to optimal hyperplane

In order to minimize:
1||”u7||2
2

under the constraints:

Vi=1,...,N,  y; (0.3 +0b)—1>0.
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Solving the dual problem

The dual problem is to find o™ maximize

E az__ E OézOéqu,y]ZIZ’z 33]7

1,7=1
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Recovering the optimal hyperplane

Once @™ is found, we recover (w*,b*) corresponding to the optimal
hyperplane. w™* is given by:

N
—% —
w = E :aixia
=1
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Interpretation : support vectors
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Simplest SVM: conclusion

Finds the optimal hyperplane, which corresponds to the largest
margin

Can be solved easily using a dual formulation




Part 3

More useful SVM:
Linear SVM for general training
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In general, training sets are not linearly separable
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What goes wrong?

The dual problem, maximize

E C\fz N E azajyzijz ZE],

,.71
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Forcing a solution

One solution is to limit the range of @, to be sure that one solution
exists. For example, maximize

Y ;N
L(a) = Zai — = Z 00 YiY LT g,
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Interpretation

B o
e
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Remarks

This formulation finds a trade-off between:

* minimizing the training error
* maximizing the margin
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Part 4

General SVM:
Non-linear classifiers for general
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Sometimes linear classifiers are not interesting
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Solution: non-linear mapping to a feature space
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DE]]E
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Kernel (simple but important)

For a given mapping ® from the space of objects X to some feature
space, the kernel of two objects x and 2’ is the inner product of their
images in the features space:

Vo, o' € X, K(z,2') = ®(z).9(2).
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Training a SVM in the feature space

Replace each Z.2" in the SVM algorithm by K(x,z’)

The dual problem is to maximize
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Predicting with a SVM in the feature space

The decision function becomes:

flz) = & .®(z) + b*
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The kernel trick

The explicit computation of ®(z) is not necessary. The kernel
K(x,2") is enough. SVM work implicitly in the feature space.

It is sometimes possible to easily compute kernels which correspond
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Kernel example

For any vector & = (x1,xz2)’, consider the mapping:

¢ (%) = (561,562,\/—561562,\/—561,\/—332, ) :
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Classical kernels for vectors

Polynomial:
K(z,2') = (x.a' +1)¢

Gaussian radial basis function




Example:

classification with a Gaussian kernel
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Part 4

Conclusion (day 1)
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Conclusion

SVM is a simple but extremely powerful learning algorithm for
binary classification

The freedom to choose the kernel offers wonderful opportunities
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http://www.kernel-machines.org
http://web.kuicr.kyoto-u.ac.jp/~vert/research/semsvm

