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3 days outline

• Day 1: Introduction to SVM

• Day 2: Applications in bioinformatics

• Day 3: Advanced topics and current research
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Today’s outline

1. SVM: A brief overview (FAQ)

2. Simplest SVM: linear classifier for separable data

3. More useful SVM: linear classifiers for general data

4. Even more useful SVM: non-linear classifiers for general data

5. Remarks
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Part 1

SVM: a brief overview (FAQ)



5

What is a SVM?

• a family of learning algorithm for classification of objects into two

classes (works also for regression)

• Input: a training set

S = {(x1, y1), . . . , (xN , yN)}

of objects xi ∈ X and their known classes yi ∈ {−1,+1}.

• Output: a classifier f : X → {−1,+1} which predicts the class

f(x) for any (new) object x ∈ X .
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Examples of classification tasks (more tomorrow)

• Optical character recognition: x is an image, y a character.

• Text classification: x is a text, y is a category (topic, spam / non

spam...)

• Medical diagnosis: x is a set of features (age, sex, blood type,

genome...), y indicates the risk.

• Protein secondary structure prediction: x is a string, y is a

secondary structure
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Pattern recognition example
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Are there other methods for classification?

• Bayesian classifier (based on maximum a posteriori probability)

• Fisher linear discriminant

• Neural networks

• Expert systems (rule-based)

• Decision tree

• ...



9

Why is it gaining popularity

• Good performance in real-world applications

• Computational efficiency (no local minimum, sparse

representation...)

• Robust in high dimension (e.g., images, microarray data, texts)

• Sound theoretical foundations
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Why is it so efficient?

• Still a research subject

• Always try to classify objects with large confidence, which prevent

from overfitting

• No strong hypothesis on the data generation process (contrary to

Bayesian approaches)
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What is overfitting?

• There is always a trade-off between good classification of the

training set, and good classification of future objects (generalization

performance)

• Overfitting means fitting too much the training data, which

degrades the generalization performance

• Very important in large dimensions, or with complex non-linear

classifiers.
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Overfitting example
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What is Vapnik’s Statistical Learning Theory

• The mathematical foundation of SVM

• Gives conditions for a learning algorithm to generalize well

• The “capacity” of the set of classifiers which can be learned must

be controlled
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Why is it relevant for bioinformatics?

• Classification problems are very common (structure, function,

localization prediction; analysis of microarray data; ...)

• Small training sets in high dimension is common

• Extensions of SVM to non-vector objects (strings, graphs...) is

natural
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Part 2

Simplest SVM:
Linear SVM for separable

training sets
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Framework

• We suppose that the object are finite-dimensional real vectors:

X = R
n and an object is:

~x = (x1, . . . , xm).

• xi can for example be a feature of a more general object

• Example: a protein sequence can be converted to a 20-dimensional

vector by taking the amino-acid composition
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Vectors and inner product

x2

x

x1

inner product:

~x.~x′ = x1x
′
1 + x2x

′
2 (+ . . .+ xmx

′
m) (1)

= ||~x||.||~x′||. cos(~x, ~x′) (2)
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Linear classifier

w.x+b < 0
Half−space:

Class: −1

w.x+b=0
Hyperplan:

w.x+b > 0
Half−space:

Class: +1
w

Classification is base on the sign the decision function:

f~w,b(~x) = ~w.~x+ b
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Linearly separable training set

w.x+b=0w.x+b < 0

w.x+b > 0
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Which one is the best?
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Vapnik’s answer : LARGEST MARGIN

γ

γ
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How to find the optimal hyperplane?

For a given linear classifier f~w,b consider the tube defined by the

values −1 and +1 of the decision function:

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

w.x+b=0
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The width of the tube is 1/||~w||

Indeed, the points ~x1 and ~x2 satisfy:{
~w.~x1 + b = 0,

~w.~x2 + b = 1.

By subtracting we get ~w.(~x2 − ~x1) = 1, and therefore:

γ = ||~x2 − ~x1|| =
1
||~w||

.
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All training points should be on the right side of the
tube

For positive examples (yi = 1) this means:

~w.~xi + b ≥ 1

For negative examples (yi = −1) this means:

~w.~xi + b ≤ −1

Both cases are summarized as follows:

∀i = 1, . . . , N, yi (~w.~xi + b) ≥ 1
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Finding the optimal hyperplane

The optimal hyperplane is defined by the pair (~w, b) which solves the

following problem:

Minimize:

||~w||2

under the constraints:

∀i = 1, . . . , N, yi (~w.~xi + b)− 1 ≥ 0.

This is a classical quadratic program.
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How to find the minimum of a convex function?

If h(u1, . . . , un) is a convex and differentiable function of n variable,

then ~u∗ is a minimum if and only if:

∇h(u∗) =

 ∂h
∂u1

(~u∗)
...

∂h
∂u1

(~u∗)

 =

 0
...

0



u*

h(u)
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How to find the minimum of a convex function with
linear constraints?

Suppose that we want the minimum of h(u) under the constraints:

gi(~u) ≥ 0, i = 1, . . . , N,

where each function gi(~u) is affine.

We introduce one variable αi for each constraint and consider the

Lagrangian:

L(~u, ~α) = h(~u)−
N∑
i=1

αigi(~u).
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Lagrangian method (ctd.)

For each ~α we can look for ~uα which minimizes L(~u, ~α) (with no

constraint), and note the dual function:

L(~α) = min
~u
L(~u, ~α).

The dual variable ~α∗ which maximizes L(~α) gives the solution of the

primal minimization problem with constraint:

~u∗ = ~uα∗.
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Application to optimal hyperplane

In order to minimize:
1
2
||~w||2

under the constraints:

∀i = 1, . . . , N, yi (~w.~xi + b)− 1 ≥ 0.

we introduce one dual variable αi for each constraint, i.e., for each

training point. The Lagrangian is:

L(~w, b, ~α) =
1
2
||~w||2 −

N∑
i=1

αi (yi (~w.~xi + b)− 1) .
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Solving the dual problem

The dual problem is to find α∗ maximize

L(~α) =
N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi.~xj,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . , N), and

N∑
i=1

αiyi = 0.

~α∗ can be easily found using classical optimization softwares.
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Recovering the optimal hyperplane

Once ~α∗ is found, we recover (~w∗, b∗) corresponding to the optimal

hyperplane. w∗ is given by:

~w∗ =
N∑
i=1

αi~xi,

and the decision function is therefore:

f∗(~x) = ~w∗.~x+ b∗

=
N∑
i=1

αi~xi.~x+ b∗.
(3)
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Interpretation : support vectors

α=0

α>0
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Simplest SVM: conclusion

• Finds the optimal hyperplane, which corresponds to the largest

margin

• Can be solved easily using a dual formulation

• The solution is sparse: the number of support vectors can be very

small compared to the size of the training set

• Only support vectors are important for prediction of future points.

All other points can be forgotten.
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Part 3

More useful SVM:
Linear SVM for general training

sets
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In general, training sets are not linearly separable
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What goes wrong?

The dual problem, maximize

L(~α) =
N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi.~xj,

under the constraints αi ≥ 0 (for i = 1, . . . , N), and

N∑
i=1

αiyi = 0,

has no solution: the larger some αi, the larger the function to

maximize.
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Forcing a solution

One solution is to limit the range of ~α, to be sure that one solution

exists. For example, maximize

L(~α) =
N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi.~xj,

under the constraints:{
0 ≤ αi≤ C, for i = 1, . . . , N∑N
i=1αiyi = 0.
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Interpretation

α=0

0<α< C

α=C
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Remarks

• This formulation finds a trade-off between:

? minimizing the training error

? maximizing the margin

• Other formulations are possible to adapt SVM to general training

sets.

• All properties of the separable case are conserved (support vectors,

sparseness, computation efficiency...)
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Part 4

General SVM:
Non-linear classifiers for general

training sets
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Sometimes linear classifiers are not interesting
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Solution: non-linear mapping to a feature space

φ
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Example

R

Let Φ(~x) = (x2
1, x

2
2)′, ~w = (1, 1)′ and b = 1. Then the decision

function is:

f(~x) = x2
1 + x2

2 −R2 = ~w.Φ(~x) + b,
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Kernel (simple but important)

For a given mapping Φ from the space of objects X to some feature

space, the kernel of two objects x and x′ is the inner product of their

images in the features space:

∀x, x′ ∈ X , K(x, x′) = ~Φ(x).~Φ(x′).

Example: if ~Φ(~x) = (x2
1, x

2
2)′, then

K(~x, ~x′) = ~Φ(~x).~Φ(~x′) = (x1)2(x′1)2 + (x2)2(x′2)2.
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Training a SVM in the feature space

Replace each ~x.~x′ in the SVM algorithm by K(x, x′)

The dual problem is to maximize

L(~α) =
N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjK(xi, xj),

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . , N∑N
i=1αiyi = 0.
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Predicting with a SVM in the feature space

The decision function becomes:

f(x) = ~w∗.~Φ(x) + b∗

=
N∑
i=1

αiK(xi, x) + b∗.
(4)
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The kernel trick

• The explicit computation of ~Φ(x) is not necessary. The kernel

K(x, x′) is enough. SVM work implicitly in the feature space.

• It is sometimes possible to easily compute kernels which correspond

to complex large-dimensional feature spaces.
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Kernel example

For any vector ~x = (x1, x2)′, consider the mapping:

Φ(~x) =
(
x2

1, x
2
2,
√

2x1x2,
√

2x1,
√

2x2, 1
)′
.

The associated kernel is:

K(~x, ~x′) = Φ(~x).Φ(~x′)

= (x1x
′
1 + x2x

′
2 + 1)2

= (~x.~x′ + 1)2
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Classical kernels for vectors

• Polynomial:

K(x, x′) = (x.x′ + 1)d

• Gaussian radial basis function

K(x, x′) = exp
(
||x− x′||2

2σ2

)

• Sigmoid

K(x, x′) = tanh(κx.x′ + θ)
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Example: classification with a Gaussian kernel

f(~x) =
N∑
i=1

αi exp
(
||~x− ~xi||2

2σ2

)
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Part 4

Conclusion (day 1)
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Conclusion

• SVM is a simple but extremely powerful learning algorithm for

binary classification

• The freedom to choose the kernel offers wonderful opportunities

(see day 3: one can design kernels for non-vector objects such as

strings, graphs...)

• More information : http://www.kernel-machines.org

• Lecture notes (draft) on my homepage

http://www.kernel-machines.org
http://web.kuicr.kyoto-u.ac.jp/~vert/research/semsvm

