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VC dimension (for Vapnik Chervonenkis dimension) measures the capacity
of a hypothesis space. Capacity is a measure of complexity and measures the
expressive power, richness or flexibility of a set of functions by assessing how
wiggly its members can be. The definitions below are taken from Vapnik (1999).

Definition 1 The VC dimension of a set of indicator functions (Vap-
nik and Chervonekis 1968; Vapnik and Chervonenkis 1971)
The VC dimension of a set of indicator functions Q(z, α), α ∈ Λ, is the max-
imum number h of vectors z1, . . . , zh that can be separated into two classes in
all 2h possible ways using functions of the set1 (i.e., the maximum number of
vectors that can be shattered by the set of functions). If for any n there exists
a set of n vectors that can be shattered by the set Q(z, α), α ∈ Λ, then the VC
dimension is equal to infinity.

Definition 2 The VC dimension of a set of real functions (Vapnik
1979)
Let A ≤ Q(z, α) ≤ B,α ∈ Λ, be a set of real functions bounded by constants A
and B (A can be −∞ and B can be ∞).

The indicator of level β for the function Q(z, α) shows for which z the func-
tion Q(z, α) exceeds β and for which it does not. The function Q(z, α) can be
described by the set of all its indicators.

Let us consider along with the set of real functions Q(z, α), α ∈ Λ, the set
of indicators

I(z, α, β) = θ{Q(z, α)− β}, α ∈ Λ, β ∈ (A,B), (1)

where θ(z) is the step function

θ(z) =

{
0 if z < 0,
1 if z ≥ 0.

(2)

1Any indicator function separates a given set of vectors into two subsets: the subset of
vectors for which this indicator function takes the value 0 and the subset of vectors for which
this indicator function takes the value 1.
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The VC dimension of a set of real functions Q(z, α), α ∈ Λ, is defined to be the
VC dimension of the set of corresponding indicators (1) with parameters α ∈ Λ
and β ∈ (A,B).

Figure 1 below gives a simple example of how to calculate the VC dimension.

Figure 1: A simple VC dimension example. There are 23 = 8 ways of assigning
3 points to two classes. For the displayed points in R2, all 8 possibilities can
be realized using separating hyperplanes, in other words, the function class can
shatter 3 points. This would not work if one was given 4 points, no matter
how they were placed. Therefore, the VC dimension of the class of separating
hyperplanes in R2 is 3. Schölkopf and Smola (2001)
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